举一反三
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为非空集合,[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系, [tex=5.071x1.357]vpuvsmbJMglxdWJtJNCULuKS9sgT4Jnay/4aPOoPNzk=[/tex]为自然映射. [br][/br]在什么条件下[tex=0.5x1.0]qMoBNrUAMK4K2TQWPIN+PA==[/tex] 为双射函数.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为非空集合,[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系, [tex=5.071x1.357]vpuvsmbJMglxdWJtJNCULuKS9sgT4Jnay/4aPOoPNzk=[/tex]为自然映射. [br][/br]设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]为给定自然数,[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]为整数集合上的模[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]相等关系,求[tex=4.286x1.357]0qEQVRzZWfGydpgUI2FEkQ==[/tex]
- [br][/br]设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是有限集合, [tex=7.286x1.357]4qjqcQmcpdikt/sZAPn2+1ErhtHgWppBcB4im18bbOc=[/tex] 试求出[br][/br]从 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 到 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 存在单射、满射和双射的条件是什么 ?[br][/br]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是有限集合 [tex=7.714x1.357]zfYTDwm4jq9iENXrMGP1viyg3D2hm9OevbRRwSa++uQ=[/tex]试求出 :[br][/br]从 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 到 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 有多少种不同的单射和双射?
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,证明 [tex=0.786x1.857]HvRfdD49AA11ZLsdQA7Xxg==[/tex]也是集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价系。
内容
- 0
非空集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的基数为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex],求集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 上的等价关系的数目.
- 1
对于以下集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]和[tex=1.071x1.0]r16o6Ym3kUZBpwROeE2QmQ==[/tex]构造从[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]到[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的双射函数.[br][/br][tex=8.0x1.357]y1inXUd6wdkNdTO5QL5Zuk/jevvGbQaRUZ7WiabigAg=[/tex]
- 2
对于以下集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]和[tex=1.071x1.0]r16o6Ym3kUZBpwROeE2QmQ==[/tex]构造从[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]到[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的双射函数.[br][/br][tex=6.143x1.357]VmIaqBca2g2Xj3sb3wuwhlVJuMp8Uf8UnMg/j+74FwqPjT9xX+T2w1tPKLXraZcV[/tex]
- 3
设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的自反和传递的关系,证明[tex=4.143x1.214]wI8xtIa6pF8inYWYe3KeRifrKOkzkU+85PIg1rCbYqM=[/tex] 是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系.
- 4
对于下列给定集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex],构造从 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 到 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的双射函数.[br][/br][tex=8.929x1.357]U3C8WbnOONVaV5vDGnTaTpgPbJmIOre6vO4FM6QTpGU=[/tex] 是实数区间.