设 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 是素数, [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 是任意二整数,则[br][/br][br][/br][tex=10.643x1.357]YmLpAkV71hkAlI0IxA5MpP/8CHRo2HMLBUa4mstNJ+zGGNXW51BPZKFFjbV8Pe+E[/tex]
举一反三
- 用真值表法和主析取范式法证明下面推理不正确. [br][/br] 如果[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]之积是负数,则 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]中恰有一个是负数.a 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]之积不是负数.所以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 都不 是负数.
- 设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是大于零的整数,[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 是大于 2 的整数,则 [tex=7.357x1.571]WcvLmKecMuDj64FktYOTH6aTG7vpVHvntDxOOrxvN9//4tajiYibkdRgBDWmEC3kMZdlqMj8AbCshH52dMaKPg==[/tex]
- 当 [tex=1.786x1.0]PNpwEwaQkBq+PSYXc8Vnww==[/tex] 时, [tex=3.929x1.429]lAYVKBAVLahcnRLZXygXnQ==[/tex] 回归方程中( ). 未知类型:{'options': ['[tex=0.571x0.786]kLyHbjayhNLhIY1u/6WKUw==[/tex] 必大于零', '[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]必等于 [tex=0.857x1.143]7n7oFVxukNBwo3UKa1adww==[/tex][br][/br]', '[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 必等于零[br][/br]', '[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]必等于 [tex=0.643x1.143]8HJP3oYekKf2ka+j2RTI9g==[/tex][br][/br]', '[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 必等于[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex][br][/br]'], 'type': 102}
- 设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 是单位向量,证明 [tex=1.786x1.143]+JWM/sEBO49/oaEmZ4MdCQ==[/tex] 平分 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 的夹角.
- 设[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]和[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]是含幺环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]中的两个可逆元,证明:[br][/br][tex=1.0x1.0]gYJhypvKme6HbnVYnWCsSw==[/tex]$a也是可逆元, 且[tex=6.571x1.5]txJ7J5UMd4f8cDkFvH0gEvJm62B6SrhNMW3V0Q7S5M4=[/tex]