设[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是任意一个数域,[tex=2.214x1.143]Gfjmu22hBtHk08dqmeC1RyO8jsTPfEqd9XPQPos49pI=[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上全体[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵作成的集合.又令[tex=14.143x1.5]6YlD8NQyEPjZlQTthGnbbGc78taRNo5faYUWPtgHMpKMp6IGQJ2HgIm2HhZk1uX8oMl3P1/+Z+60cXqYjbrK1mxPcjW65EFyNHjGLN5Gsgo=[/tex][tex=13.929x1.5]qiOaAZPqQAQ46YWu+gHlGckoFjp3rskYb4L2SYCbCNZ6upaZeGFHGG1w+0BjREHWh9D8xEyvQxQd3J6Vau/ytYrIiau9AOSF5pYMuaZbt0A=[/tex]证明:[tex=3.357x1.357]VlCh6ccWIEBx7zNKa4vFCA==[/tex]与[tex=3.143x1.357]1aksjOKRGRfajm652Z0mrQ==[/tex]对于方阵的普通乘法都作成群(前者称为 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上的一般线性群,后者称为[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上的特殊线性群).
举一反三
- 设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵集合到 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 的一个映射, 它满足下列条件:(1) 对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=11.857x1.357]PyBoS3zBK0M8dFy5nc2BCQAjvq9LapSCVSEPLvCboCNL9Sf89YDDNJnh9P6XU+Xa[/tex](2) 对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 中数 [tex=7.143x1.357]ZssA/FjDDGKlA7//o6lvBHjGIYzZWXwRor3cGphMPPA=[/tex](3) 对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=9.071x1.357]CV7XimFyNvpshBoHaexhcrFdFwXW4pEFstEvGviliLE=[/tex](4) [tex=4.143x1.357]mTjc3HPxil5qpbqmEffFWqjszfkzs0w4AuinGz3AXRg=[/tex]求证: [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 就是迹, 即 [tex=4.714x1.357]abvMETy3K96uBRzmzh1OP8sPIldqFdFpE5NVrVc0Ciw=[/tex] 对一切 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 成立.
- 设 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上的多项式且次数大于 0, 则 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 在 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上不可约的充要条件是: 对 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上任意适合 [tex=6.357x1.357]+3zmuKty1AhSMDB3tNdbXxLJRZTFKVq4xUmyZwpiyJg=[/tex] 的多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex], 或者 [tex=4.571x1.357]NaXhQuud9whTIdEia7cAy145H6cmmDHeiC85YWZqPkg=[/tex], 或者 [tex=4.286x1.357]Bjm/GfOl5UoUE3/6/N5Bew62HKPUKuqC0HS8DG8f9D4=[/tex]
- 设[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]是素数,[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是域,[tex=3.786x1.214]Aw3CDihCL1ffMmVzlgh/Gc+QQcOIVGu5mkbxsO3H328=[/tex]且[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]包含[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]次单位根,[tex=2.0x1.071]fn8qSvoGdKV5LvM1JyIK2g==[/tex],求[tex=2.429x1.143]yW4k+iHURSbQxcCAtP9FKg==[/tex]对[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的群。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵。证明:存在[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上一个非零多项式[tex=1.857x1.357]sBGRsVJ0Y3fPPi7d5ztPoA==[/tex],使得[tex=3.571x1.357]OOyEFi5Qx/r8c8gc6BAiHg==[/tex]。
- 设域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的特征[tex=2.357x1.214]pbc4vZT08gszjwicRtTRnQ==[/tex],[tex=2.0x1.357]b5RgJKaKKPxfWp6M6XOn8A==[/tex],试求[tex=2.357x1.143]RXPUuGtyMsNdtHsopW2V8w==[/tex]对[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的群。