设群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的每个元素 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]都满足 [tex=2.143x1.214]V+7/hfR5UbG151kRF33SMw==[/tex],则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群。
举一反三
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex] 为群, [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中的 2 阶元,证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中与[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]可交换的元素构成[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的子群.
- 证明:若群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中每一个元素都适合方程 [tex=2.214x1.214]jX6m6TY3vI6QWjhU0nwLtg==[/tex], 则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群。
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群,那么 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的商群仍是交换群。
- 若群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中每个元素的逆元就是其自身,则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个交换群.
- 设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]到群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的同构, 证明:对于任意的[tex=7.5x1.357]ZQMpGr73vEhlsV541O4Yx72mt1UE/SKg3FK8loX/zUI=[/tex] 举例说明, 若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]到群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的同态, 则[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的阶与[tex=1.857x1.357]+oWS0hM0HogLU9xbRXppWQ==[/tex]的阶不一定相同.