设g(x)=ex,x≤0lnx,x>0则g(g(12))=______.
举一反三
- 若对任意实数x,有¦(―x)=―¦(x),g(―x)=g(x),且x>0时¦′(x)>0,g′(x)>0,则x<0时 A: ¦′(x)>0,g′(x)>0 B: ¦′(x)>0,g′(x)<0 C: ¦′(x)<0,g′(x)>0 D: ¦′(x)<0,g′(x)<0
- 设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)
- 设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
- 设f(x)=x2,g(x)=ex,则f[g(x)]=_________.
- 已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时( ) A: f′(x)>0,g′(x)>0 B: f′(x)>0,g′(x)<0 C: f′(x)<0,g′(x)>0 D: f′(x)<0,g′(x)<0