设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为非负整数,形如 [tex=4.357x1.429]sC6TIaknA0rYsg6tYQLLb4gosfR7eW+unFUOrj3CuIY=[/tex]的素数,称为费马数. 证明若 [tex=2.857x1.214]ajIx7spSSZrzClVbGKVL8w==[/tex] 时, [tex=5.286x1.357]dhzg840pphdYS5UF/sSsBSyh5LG/b57pb+9oLG+9WSw=[/tex]由此证明了素数是无穷多个.
举一反三
- 设 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]是大于零的整数,[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]为素数, 证明[tex=6.143x3.0]jQ+uoZDBf+s6RnBcwF1AZPTiyeO1mszunfdTGSLkBtaY9nTXU2rgEJgupU5untUToMcResvIWY0SxrhAuSrgdQ==[/tex]
- 证明:前[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个自然数之和的个位数码不能是 2、4、7、9
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]是大于[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]的整数,[tex=5.286x3.429]XjVYECQMXITTCdQJWcX2X8NI+ZVhYGs4xmfg/V6kZvA=[/tex]。证明:若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]不是素数,则[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=0.929x1.214]ipY8J/5IDyDdvaflKWkPEg==[/tex]上可约。
- 设[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]是一个素数. 证明:对任何正整数[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex],都存在一个在域 [tex=1.071x1.286]bM7qNVIctMbDn6oefl1jzg==[/tex]上不可约的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次多项式.
- 设p是单质数,a是大于1的整数,证明:[tex=2.214x1.143]I7QtTNhi9DxeN4wi1+A5x70XD4h3l1U/AR6VBDigWGE=[/tex]的奇质数q是[tex=2.0x1.0]qlK4NvYUrbr5vlXlMiHWhg==[/tex]的因数或是形如[tex=2.857x1.214]WGhOSMV1LEDbUAUbOAzdyg==[/tex]的整数,其中x是整数。