设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续, 且 [tex=7.357x1.357]uDZognCYe2c/zRuokcdW2HBjR3D/FFsKyFLSnT+mmSc=[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上恒正或恒负.
举一反三
- 设 [tex=5.857x1.357]gfTyftYv3vx5MA+ZCm0ioTLxy7oVEpeq/Rn9ytEwYJE=[/tex] 证明:若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上恒不为零,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex] 上恒正(或恒负)。
- 如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上有界.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续, 且 [tex=6.429x2.857]v8dYDmjeifbMxF1xMKtGGOROme7UMSqlNsxt5NS/Crc=[/tex], 证明 [tex=1.857x1.357]sBGRsVJ0Y3fPPi7d5ztPoA==[/tex] 在 [tex=2.0x1.357]iavJqAznijPyoXL3RTXYGA==[/tex] 上恒为 0 .
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上恒为常数的充要条件是:对于任何 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的连续函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 且 [tex=6.0x2.857]yINAHOXKHG7ruMsL/vkvBEYj6HewtfoBmgOlOkEMcJy2RxHEgnyJ8vpzCdsSLoLZ[/tex], 总有[tex=8.143x2.857]7gcaGQKU+5R98xRnVkbRSL4g1A5RDN/b3vHA6tm2w1heBr45R4BeYC3/TzlbrSns[/tex]
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上一有限函数,那么下列两件事等价:(1)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上满足 Lipschitz 条件,(2)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上某个有界可积函数的不定积分.