若在区间\([a,b]\)上\(f(x)\)有定义,存在可微函数\(F(x)\),使得\(F'(x) = f(x)\) ,那么\(F(x)\) 是\(f(x)\) 的全体原函数( )。
举一反三
- 若F(x)是连续函数f(x)在区间[a,b]上的一个原函数,则[a,b]上f(x)的定积分等于( ) A: F(a)-F(b) B: F(b)-F(a) C: F(x)+C D: F(x)
- 设函数f(x)在某区间内有定义,如果存在一个函数F(x),使得对于该区间上的每一点都有或dF(x)=f(x)dx,则F(x)与f(x)的关系是()。 A: F(x)是f(x)的原函数 B: F(x)与f(x)是关于原点对称 C: F(x)是f(x)的奇函数 D: F(x)与f(x)是无关联的函数
- 设f(X)及g(X)在[a,b]上连续(a<b),证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>=g(x),且∫f(x)dx=∫g(x)dx,则在[a,b]上f(x)恒等于g(x)
- 若函数F(x)和G(x)都是f(x)在区间I上的原函数,那么在区间I上必有( ) A: F(x)=CG(x) B: F(x)=G(x)+C C: F(x)=G(x) D: F(x)=C-G(x)
- 设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx