将下列命题用零元谓词符号化 只有 2 是素数,2 才不是偶数; 设 F(x):x 是偶数,G(x):x 是素数,
A: G(2)F(2),
B: F(2)G(2)
C: F(2)G(2)
D: )F(2)G(2)
A: G(2)F(2),
B: F(2)G(2)
C: F(2)G(2)
D: )F(2)G(2)
举一反三
- 设$f(x)=x^2$,$g(x)=2^x$, 那么 $f \circ f \circ g=$ A: $2^{x^4}$ B: $2^{4x}$ C: $x^{2^{2x}}$ D: $x^{2^{x^2}}$
- F[x]中,若f(x)g(x)=2,则f(x^2)g(x^2)=
- F[x]中,若f(x)g(x)=2,则f(x^2)g(x^2)=
- 下列函数相等的是( )。 A: \( f(x) = \ln {x^2},g(x) = 2\ln x \) B: \( f(x) = x,g(x) = \sqrt { { x^2}} \) C: \( f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \( f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)
- 下列推导正确的是 。 A: (1) F(x)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG B: (1)F(a)→G(x) 前提引入 (2)∃x(F(x)→G(x)) (1)EG C: (1) F(a)→G(x) 前提引入 (2)∃y(F(y)→G(x)) (1)EG D: (1) F(a)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG