试证 如果[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是域 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 上 3 次不可约多项式, [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 是 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 的有限扩域, 且有 [tex=4.643x1.357]eed8Jg7I4JHdRcJJqN2T8OnQle8ewodWElR8Eb8Q30o=[/tex] 则[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]在[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]上也不可约.
举一反三
- 找一个域 [tex=0.929x1.214]+1wJql5cfr8bn3vbFZ622w==[/tex]使 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 有一个有限扩域 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex], 而[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 不是[tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex]的单扩域.
- 设[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 是域 [tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex]的代数扩域,且 [tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex] 上每一多项式[tex=2.143x1.357]rByUrHVBTQB2C43DbY7ymQ==[/tex]在 [tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex] 上的分裂域都是[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]的子域,证明: [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 是代数闭域.
- 令 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 是域 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 的一个代数扩域,而 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]是[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 上的一个代数元. 证明, [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex] 是 [tex=0.857x1.0]8R0gNFOiWLE7jtLTMNrZAg==[/tex] 上的一个代数元.
- 设[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上首系数为[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]的多项式,且在某扩域中有根 [tex=0.929x0.786]ZAiG7AJu8kc6lTV9euHRkQ==[/tex]证明:若[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]在[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上不可约,则[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]是[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]在[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的最小多项式.
- 设 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 是特征数为 2 的素域,求出[tex=1.929x1.357]ZvK0aUQmCRkwWSUtHsIu+g==[/tex]的一切三次不可约多项式,其 [tex=1.929x1.357]ZvK0aUQmCRkwWSUtHsIu+g==[/tex] 是 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]上的一元多项式环.