举一反三
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=4.786x1.357]WafKDm5071vVz9IYJgBhj8LbdrnQF2M50OcMtr5E7Yg=[/tex] 内可导,求证:(1) 若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 为奇函数,则 [tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex] 为偶函数;(2) 若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 为偶函数,则 [tex=2.214x1.429]r3ryU11yfSTbvuAILFSmgH2ollMLH96oAfXGf/TJKyA=[/tex] 为奇函数.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.5x1.357]0Ym3gy2gstdBTE13VS7w2A==[/tex] 内可导. 证明 : 如果[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是偶函数,那么 [tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex] 是奇函数;如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是奇函 数,那么 [tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex] 是偶函数.
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是可导周期函数,证明:[tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex]也是周期函数。
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,证明:当导函数[tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有界时,[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]5xj7kOKvswCRhlt6IgfwdA==[/tex]内也有界.
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=4.786x1.357]WafKDm5071vVz9IYJgBhj8LbdrnQF2M50OcMtr5E7Yg=[/tex]内可微分,则下列命题正确的是 未知类型:{'options': ['若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]没有零点,则[tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex]必定也没有零点', '若[tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex]没有零点,则[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]必定也没有零点', '若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]没有零点,则[tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex]至多只有一个零点', '若[tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex]没有零点,则[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]至多只有一个零点'], 'type': 102}
内容
- 0
如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为偶函数, 且 [tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex]存在,证明 [tex=3.714x1.429]pT/UR8b8n3pqCE1GhAilsRByzQvBmywiUecDa3dRUuE=[/tex]
- 1
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 二阶可导且 [tex=6.357x1.429]e6+rzDcVVPSEHjxxW4BNBQOHRK8p4QazapXIgf5J8eM=[/tex] 求 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] .
- 2
设[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的导数[tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex]的[tex=1.857x1.143]y7i0KNMTbem23CcX+abErQ==[/tex]重因式,证明:[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]未必是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]重因式.
- 3
试证明下列命题:设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是定义在 [tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex] 上的可微函数,且[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex] 都是 [tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex] 上的可积函数. 则 [tex=6.357x2.643]e+yUMNjQeuJYe6l0ZbTv1Ac8pcZ39z+1PFRGk+eBO/dyNHsguj/HLEgcxVLppISs[/tex].
- 4
设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]满足[tex=9.357x1.357]jS3BXh2rdfvLZd4hIu+jvKEGxx9TN7URFb39YkdVMaQ=[/tex]为常数。证明[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是奇函数。