举一反三
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是任意集合,如果[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的等价关系,证明[tex=1.214x1.214]mW5AcsQUCJqRe+5oERoyfQ==[/tex]也是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的等价关系
- 假设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是非空集合,[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]是以[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]作为定义域的函数,设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是定义在[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的关系,若[tex=4.429x1.357]9nZz5SVdOFP9e7MUHbGQbA==[/tex],则[tex=2.286x1.357]5kIMNyRYlKina6SoxHl1bg==[/tex]属于[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]。证明[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的等价关系。
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]和[tex=1.0x1.143]vL/JscKF18qJf47ozsjQEQ==[/tex]是集合[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的等价关系,用例子证明[tex=2.929x1.143]C2mN1zCbfhCsNDe5KuTbjwY53jutWC5+HizuaTYOcfo=[/tex]不一定是等价关系。
- 设正整数的序偶集合[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex], 在[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上定义的二元关系[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]如下:[tex=7.214x1.357]CLCeGfyTItBrQgQJTySVTyiGleoWF8kNftOUYIkNP1hVSPAqKSk1GdZTMvbye+bcNbPE579jcQ/sMPYzu7ZsEQ==[/tex]当且仅当[tex=2.929x1.0]qewqoUzb0rIVy7fbmiGxLQ==[/tex]证明:[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是一个等价关系。
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的可逆线性变换.证明:1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值一定不为0;2) 如果[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值,那么[tex=1.643x1.357]7hXLKuNcz29qRRA2zjn4rA==[/tex]是[tex=1.714x1.214]d+9NDUvA5ZDrRGeFW5fxcQ==[/tex]的特征值.
内容
- 0
设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的二元关系,如果[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是传递的和反自反的,称[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是拟序关系。证明: a) 如果[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的拟序关系,则[tex=5.643x1.357]JLAL17dohoLDbWIoPsBl3fM4mRl39sABlSy8A+06Kcc=[/tex]是偏序关系。
- 1
设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,证明 [tex=0.786x1.857]HvRfdD49AA11ZLsdQA7Xxg==[/tex]也是集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价系。
- 2
设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是一个二元关系,设[tex=4.643x1.357]nEUU6IRp8l7+6cDZHe7XZh6bLYxNn1D/YJgkZoRpCLA=[/tex]对于某一[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex],有[tex=3.643x1.357]6bNXBI4HLw0ZEN7CivhEEeht8dRMlcBC4qQNQmndynM=[/tex]且[tex=4.071x1.357]8Aq3WaeBgRwPd/2XhZfIFM0RiN4uZIXOUIhZuj1DJ0g=[/tex]证明:若[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是一个等价关系,则[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]也是一个等价关系。
- 3
设h为X上函数,证明下列两个条件等价,(1)h为一单射(2)对任意X上的函数[tex=5.429x1.214]3BrfPgAFe5dbHQTMAYnbS+118W4YAj6CiW06EKMaxNI=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]
- 4
证明如果[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是集合[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的空关系或全域关系,那么[tex=2.714x1.214]VWTkTRIuDfwyzvU0Mj2FVw==[/tex]。