设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]和[tex=1.0x1.143]vL/JscKF18qJf47ozsjQEQ==[/tex]是集合[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的等价关系,用例子证明[tex=2.929x1.143]C2mN1zCbfhCsNDe5KuTbjwY53jutWC5+HizuaTYOcfo=[/tex]不一定是等价关系。
举一反三
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]和[tex=1.0x1.143]5LEOlvfKeKenEUEX4u350Q==[/tex]是集合[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的等价关系,用例子证明[tex=2.929x1.143]Jw1brLR4r3lVGhkhKTktj0ozK+czUOZD0K66MCVSRts=[/tex]不一定是等价关系,要尽可能小地选取集合[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]。本题说明等价关系的并运算保持自反和对称特性但不保持传递特性。
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是任意集合,如果[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的等价关系,证明[tex=1.214x1.214]mW5AcsQUCJqRe+5oERoyfQ==[/tex]也是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的等价关系
- [tex=0.643x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的等价关系,证明[tex=2.071x1.0]VJeCzmSKNuAO/cG3rmx+rA==[/tex]也是等价的。
- 假设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是非空集合,[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]是以[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]作为定义域的函数,设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是定义在[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的关系,若[tex=4.429x1.357]9nZz5SVdOFP9e7MUHbGQbA==[/tex],则[tex=2.286x1.357]5kIMNyRYlKina6SoxHl1bg==[/tex]属于[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]。证明[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的等价关系。
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,证明 [tex=0.786x1.857]HvRfdD49AA11ZLsdQA7Xxg==[/tex]也是集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价系。