证明,复数域[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]作为实数域[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上向量空间,与[tex=1.0x1.214]++ZnQ9Yy0yDRqmUwKWQxMg==[/tex]同构。
举一反三
- 证明,复数域[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]作为实数域[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]上向量空间,维数是 2。如果 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]看成它本身上的向量空间的话,维数是几?
- 判断下面所定义的变换或映射 [tex=1.143x1.214]xoJBjef3jxpHL3gbT3Dzbg==[/tex]是否为线性的. 将复数域 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]和实数域都看作实数域 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的线性空间,映射[tex=7.643x1.357]eeZmrRUHCcSDWIh+qJ5fYNUaojihEdT+cKgydKCIue8s52mFQsPIu21hme1bQovJ[/tex].
- 证明,复数域[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]作为实数域[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]上的向量空间,维数是2.如果将[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]看成它本身上的向量空间的话,维数是几?
- 令 [tex=12.143x2.786]pSCOUldRRliBGKoKusoPeyxHVDDBCRvg2aLZ3lSfrRhdCkZgBgO3yIc6UVxx5cGgV4+C+kzcZOykQY2nRMMHv3wE2kHEj7z7C3axbIglwQOx1DMdPp/CG0Zh0xphA/bK1+mlRFIZa9Eo4nMouD3fMg==[/tex]证明复数域 [tex=0.857x1.0]dcHR/AMhWBg4tOPVkI9qFw==[/tex] 作为实数域 [tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex] 上的线性空间与 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 同构, 并且写出一个同构映射.
- 如果有理数域[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex]上的线性空间[tex=1.0x1.214]hhEyiXsmUqGVtlGvWeNOYA==[/tex]和[tex=1.0x1.214]++ZnQ9Yy0yDRqmUwKWQxMg==[/tex]之间存在一一对应, 那么线性空间[tex=1.0x1.214]hhEyiXsmUqGVtlGvWeNOYA==[/tex]和[tex=1.0x1.214]++ZnQ9Yy0yDRqmUwKWQxMg==[/tex]一定同构吗?