设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在闭区间 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,其值域 [tex=6.857x1.357]JGOkDZJ4GMN8UM8ij+39BwcNYfaDtwpbCzp750EqD8s=[/tex]证明该函数存在不动 点,即存在[tex=3.429x1.357]iixrPRfC9tnxFYayq33b+/EH2J/liipZ+5YrKxv3dJM=[/tex]使得 [tex=4.5x1.357]5s1Pyp2g/W5DyoDffIRFvKGbzwaUWiCtdWXWs8kciP0=[/tex]
举一反三
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 区间[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上可导,证明 : 存在一点 [tex=3.143x1.357]3v9HBq0lFtIDOP11f7lbPg==[/tex], 使得等式 [tex=11.429x2.5]WOqEVrpuCOha2ZBQjNNPrAVxQjjfA1h4tb1zjguDu2gGIMJX1FDyEvF1edf6o7UBVNxanJs2u11gkxisMYf5sA==[/tex]成立.
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上一有限函数,那么下列两件事等价:(1)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上满足 Lipschitz 条件,(2)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上某个有界可积函数的不定积分.
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在闭区间[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上可微分.若有[tex=15.286x1.429]w6PVZnaDpV6OaJNAIufU/EP72TSbtHUhUz3G8wlhoSJsnDJY5w2KW+OV5pMFmANpOBZQCiaWdWSXdWajFQZ4nQJlvKNW65f/vV59CfSLqxU=[/tex]证明:[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在闭区间[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上的两个零点之间必有[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的零点.
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续, 且 [tex=7.357x1.357]uDZognCYe2c/zRuokcdW2HBjR3D/FFsKyFLSnT+mmSc=[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上恒正或恒负.
- 函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续是在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上可导的