举一反三
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]uQo0Qwms4Bgi6pleNWBbfw==[/tex] 上可积,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上定义, 且在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 中除了有限个点之外,都有 [tex=4.5x1.357]g5nLB1f2rSsNKL5qY072JQ==[/tex] 证明 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上也可积, 并且有[tex=10.286x2.857]NY7oodrirBbiImTnksGISeP5InpehyYXak28A033MDhXvTwEN9Hk0ozWBWZ0gGlFgyOpyoftjjpQw938qmEWdA==[/tex].[br][/br]
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上恒为常数的充要条件是:对于任何 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的连续函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 且 [tex=6.0x2.857]yINAHOXKHG7ruMsL/vkvBEYj6HewtfoBmgOlOkEMcJy2RxHEgnyJ8vpzCdsSLoLZ[/tex], 总有[tex=8.143x2.857]7gcaGQKU+5R98xRnVkbRSL4g1A5RDN/b3vHA6tm2w1heBr45R4BeYC3/TzlbrSns[/tex]
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续, 且 [tex=7.786x1.357]VkAf+7dPgAsudsASsRrclFj+MC8+A5vfRDSfbqDUl2I=[/tex], 证明[tex=16.429x3.5]Q9IYTFR3kTY3iJCCC2wa72hfjSzrNpaMNw1974QpoR/oXbRSbr+NeQpmz/pnEHa/rh4G2ehWlcmtVMXDkVQ+fR1AU3l7eFBJGtzsQXZ8e3WnHwvr/pSodN7pSasEDUPP2kBR1hwsCd2mfNnCDwKkGfbYU6BleCpMfK6nH8gTVN4=[/tex][br][/br]
- 证明: 若闭区间 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的单调有界函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 能取到 [tex=1.857x1.357]+oWS0hM0HogLU9xbRXppWQ==[/tex] 和 [tex=1.714x1.357]6GTYhzmnTgdXYb7xz1/D/Q==[/tex] 之间的一切值,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的连续函数.
- 设 [tex=4.143x1.357]9L2r5tlh3JJ32yY4a6m3XQ==[/tex]在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上可导,对任意 [tex=3.429x1.357]WwD1rvmcLUz5NmrhSa2JkQ==[/tex] 恒有 [tex=10.857x1.429]BOXEzuhVMucQckW13ygVY6GppyAk98G8TWYiQeEz76k+33U3ktRMA16Jolb2SzKc[/tex]证明: 若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]上有两个零点,则介于这两个零点之间[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]至少有一个零点.
内容
- 0
设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上一有限函数,那么下列两件事等价:(1)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上满足 Lipschitz 条件,(2)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上某个有界可积函数的不定积分.
- 1
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的两个不可约多项式, [tex=1.286x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex] 分别是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 的某个扩域 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 中的根. 证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=1.857x1.357]tPNFVy5slGvSYsD8XFn6/g==[/tex] 上可约当且仅当 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=2.0x1.357]meCJel/67w3XgRBnBuDjxw==[/tex] 上 可约.
- 2
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 上可导, [tex=5.857x1.357]/v/rbm8y94xQjBrlnxRxnA==[/tex] 又[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续. 证明 : 一定至少存在[tex=3.143x1.357]3v9HBq0lFtIDOP11f7lbPg==[/tex]使得[tex=6.5x1.429]aWJWVBG3St35JwVMiGniOlnSiyAS3oZDWEyWQ5Lx8fx4MchmEpw2xhyFVGP0Nayc[/tex]
- 3
证明: 在 [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中, 如果 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的倍式和, 并且 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一 个公因式, 则 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个最大公因式.
- 4
如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上有界.