• 2022-06-17
    积分1/(e^x+1)dx
  • 令u=e^x,则du=e^xdx=udx即是说du/u=dx所以原式为∫1/(u(u+1))du=∫(1/u-1/(u+1))du=∫du/u-∫du/(u+1)=ln|u|-ln|u+1|+C所以原式为lne^x-ln(e^x+1)+C=x-ln(e^x+1)+C

    内容

    • 0

      利用定积分的定义计算下列定积分定积分(0到1)2xdx(0到1)(x^2)dx(0到1)(e^x)dx利用定积分的几何定义说

    • 1

      定积分∫(上限1,下限-1)x/√(5-4x)dx

    • 2

      下列广义积分中, ()是发散的。 A: \( \int_{ - \infty }^0 { { e^x}dx} \) B: \( \int_0^1 { { 1 \over {\sqrt x }}dx} \) C: \( \int_0^{ + \infty } { { e^{ - 100x}}dx} \) D: \( \int_1^{ + \infty } { { 1 \over {\sqrt x }}dx} \)

    • 3

      计算定积分∫(1/x*lnx)dx

    • 4

      四个选项中是广义积分的为( )。 A: \( \int_0^1 { { 1 \over x}dx} \) B: \( \int_{ - 1}^0 { { 1 \over {x - 1}}dx} \) C: \( \int_{1}^2 { { \ lnx}dx} \) D: \( \int_{ - 1}^0 { { 1 \over {\sqrt {1 - x} }}dx} \)