• 2022-06-17
    设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导, [tex=9.357x1.357]+lfGytIskzQkbeHONSY90qHzeBnlKr3vYeswlVehj5c=[/tex], 讨论 [tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex] 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导的条件。
  • 解:[tex=17.357x9.643]ifE9NWj3X6IpRVSt3T5ITnSgjXf4pgTFN+otKkTyQNOc96/qFqVhYpf0PLa30pw8lyVsa+QQJ1czgIN3IszXADzt86O+dAEPuVWME/eEXqvKxuBSiJY0WtfK1j9/LNY3hknTUXEUoew1NaFlF/KfhH0/e/TGM+TojugQiSEy2rJYY93/gmKuzsv++J4DnHMRPBzSGO97f3k5XqFkSwz5XPWQUSGk3zNzNzbBPE4ZoF9OZPXgrQn9ltBP7iY1jA8RJ0Kdic9qm5BkTxbe7iOvfrgUgADS7Gi2ZEob7aTe2WO8KQYaYqsSNiGk/8ZyYP8Mt+3Ik1UaJQyn4pfVV+LtJokc6WaxjPeupTFT4F8Ogu7CApKnW1tmfRJ1UEX0xJ/eECxMgyb24HCf7STIq7cBNA==[/tex][tex=17.0x6.929]a0s3MH7cLIdmiBRR0YN0659pgdmeLwwkqnfk6zXNhZie99xp0Smsgz981SmeRpdMKm1ypqIE3YJAS3NcZU50al9sklyAReSHpiYQ5nHFFz5hRNngM1ZqQLeg1buL22Jjwn504euG8MhKXGuHQi9rAO8wxPeHm5qv5//FflQwO/XVwu95VaEOx6TXR/BDBgpL2Ikl7bMO7zCTHXYax+FvS6s+d9kw6gvw0cersVGU05Zs6xQ9juWr2Evfy5juuaty7t+IlqxAlzXNRA4zK39su6QGTkBzKHPicEk6BhTbm6w=[/tex]令 [tex=7.214x1.429]usG0A6RuA7OAamo07qjadsgmyUj0jvpv+/V/KLq7H6+Ps+6UrzX8KdA2ziRL/LG5[/tex] 得 [tex=3.929x1.357]t1Zi6UbUuXZQsu6oZTiehg==[/tex] 即 [tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex] 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导的充分必要条件是 [tex=3.071x1.357]trWzXE2Y41pdKtnPLMtSnQ==[/tex]。

    举一反三

    内容

    • 0

      设 [tex=5.643x1.357]noly8FLjeJB/L2hTg5fcjQSPHAChw1DHH8qTk5gIEfo=[/tex] 求 [tex=5.429x1.286]LigwaoScOaIzMcYnxLOdpwZ0gVOcuOib+p15OgTuamlAbDaqip04teDOOZAHSBDe[/tex] 并说明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处的可导性.

    • 1

      设[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处连续,求[tex=7.143x1.357]WBHzx45u9p6ikQbcvJXksk+/jCvyYca+kc9mrxy+h0o=[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处的导数[tex=2.143x1.429]cyTLS33m58hKP2tqKCic2g==[/tex] .

    • 2

      设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导,且 [tex=3.643x1.357]trWzXE2Y41pdKtnPLMtSnQ==[/tex] 求其极限 [tex=6.929x1.286]Prq2jxGFD86GY3GcXzbbUrGKsGWS3vQSccOX7JHGWh8=[/tex] :[tex=4.286x2.5]ENxIatiC2yqgaopSQCG83t3kurVWrMzpBRbeYcnuiQ/zi9rB0wNw9+fUs7T7MLbC[/tex]

    • 3

      设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]点连续,且极限[tex=6.429x2.5]ENxIatiC2yqgaopSQCG83t3kurVWrMzpBRbeYcnuiQ8Lr1QVkHWb83+M9PWElMGa[/tex]。问:函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]点处是否可导?若可导,求[tex=2.143x1.429]mzwRhuDvrCMocO2CEffeaJzsyOyV9IHxECuGvFss+GU=[/tex]。

    • 4

      讨论函数 [tex=3.0x1.357]37/oZRunQe/zDscJjjjR3A==[/tex] 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处的可导性.