设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处连续,且[tex=6.5x2.5]ENxIatiC2yqgaopSQCG83t3kurVWrMzpBRbeYcnuiQ9Rk8hzlRgusdS/2v74uW9M[/tex]([tex=0.571x0.786]WLga5RWgrUta8vWDwROpYA==[/tex]为常数)求[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=2.143x1.429]+wS5Fh3I5FHTqEONA2uEeA==[/tex].
举一反三
- 设函数 [tex=12.786x4.071]ACpG7W/lXiEwdW69ASBj8/2YlnttL4SSB5wR8px8LpgUNzq7ycdc7SLe4a4gCUD/CbNsVRhRP/lHmPeVS16UtG9Khkwa+IYO4PoiXfjXGMw2WptZMt2fs9fNz+4jAOVOFkx4pUhmaNtVuSPhoF33Gg==[/tex],讨论在上面条件下,[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex](1) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续;(2) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导;(3) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处导数连续?
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]点连续,且极限[tex=6.429x2.5]ENxIatiC2yqgaopSQCG83t3kurVWrMzpBRbeYcnuiQ8Lr1QVkHWb83+M9PWElMGa[/tex]。问:函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]点处是否可导?若可导,求[tex=2.143x1.429]mzwRhuDvrCMocO2CEffeaJzsyOyV9IHxECuGvFss+GU=[/tex]。
- 设函数 [tex=12.071x2.429]EPaISH7F+7OFqeEao9lVbY9M+geAOkEejYuk2YpDRrOpQz9YTdPtPGqZt8DVR9ycU9GTKtdo3Jd2VZIC9SROX+rW6U9uRk7t3RjrabN8epo=[/tex] 应当怎样选择 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],使得 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续.
- 设[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处连续,求[tex=7.143x1.357]WBHzx45u9p6ikQbcvJXksk+/jCvyYca+kc9mrxy+h0o=[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处的导数[tex=2.143x1.429]cyTLS33m58hKP2tqKCic2g==[/tex] .
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导, [tex=9.357x1.357]+lfGytIskzQkbeHONSY90qHzeBnlKr3vYeswlVehj5c=[/tex], 讨论 [tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex] 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导的条件。