• 2022-06-17
    设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处连续,且[tex=6.5x2.5]ENxIatiC2yqgaopSQCG83t3kurVWrMzpBRbeYcnuiQ9Rk8hzlRgusdS/2v74uW9M[/tex]([tex=0.571x0.786]WLga5RWgrUta8vWDwROpYA==[/tex]为常数)求[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=2.143x1.429]+wS5Fh3I5FHTqEONA2uEeA==[/tex].
  • 解 由极限性质和已知条件,有[tex=8.071x2.429]DQxlqHZ1o5A7djTGsLaReiq4T2YQbR1Tk/s0oEcKgbvl1E7Byd+AK/PzeftBVXAU[/tex]其中[tex=4.929x1.857]ENxIatiC2yqgaopSQCG83tBlsWnwP7oc9rpdupPCx+XabQ2+MduBaHdvDVpV23qI[/tex].于是[tex=9.286x1.357]limQYqyEgSuiri0NKLzsuqgISHBN0EylcADsPxFqW0A=[/tex]由[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处连续,得[tex=17.0x1.857]qeto1ZQ9UWngXPQFHzo3WbU7+dwUqNHu3ega/9lQ4eKzYggXvjq20SKhAd6QKzRSAJTDNz9WPJ+5bttNMCe8tfDEFpzKeTr8Yk3Y53MJRzQ=[/tex]再由已知条件,得[tex=16.714x2.5]Wh0BbcsxbdPTUak0FdVk/TlTfcIkPeP0OOSTkYJgFxtfMNhXXZ/LPtz6gS38HLnoVM00nNpXUm8J29RVT++L0l+1wBpwrGo1h9SWcBNChaaFuhhFZV0PEJDytShOH5NAWhx0rLkkARB7FSeKrZRGtQ==[/tex]所以,[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处可导,且[tex=3.429x1.429]/lA3IJfS3a65l4xFSXwMDExqFQ7+gp66hfQaHJ0kkgI=[/tex].

    举一反三

    内容

    • 0

      设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 满足 [tex=3.643x1.357]trWzXE2Y41pdKtnPLMtSnQ==[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导的充分必要条件是:存在在 [tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续的函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex],使得 [tex=5.071x1.357]V/Yt0M6xxWzSF4VP2LPvmQ==[/tex], 且此时成立 [tex=4.643x1.429]j33crdi4rhtvkGdRcb9xHv8ljW9mqQebzO3XpbwfxLI=[/tex].

    • 1

      对函数[tex=4.214x2.429]6tH0Bct4KP4fPnjqJeNu+zikzekSn1o9v2gKgyG5lhA=[/tex],回答下列问题:(1)函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处的左,右极限是否存在?(2)函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处是否有极限? 为什么?(3)函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex]处是否有极限? 为什么?

    • 2

      设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]对一切实数[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]满足关系式[tex=12.143x1.571]oe6Y6KRQZY0QeXLoNKQj2DVVRBW7T0DL8xdrtxeSAEoXt8XX9huFYhQt/cuGw/8AYID9CLGbIkfiAmVNgp4LppysqTV/2DsOaMNLjQWUZ1HIkuZNLAXNso46jkt+HsoP[/tex](1) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=6.5x1.286]v96cVO/vN8TOnG6sstlXr29k5oMFbB4Oct7UG0scbYvUjzk3AdAIJTKxq5gTYDgP[/tex]处有极值,试证它是极小值.(2) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处有极值,则它是极大值还是极小值?

    • 3

      设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]对一切实数[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]满足微分方程[tex=11.786x1.571]k0UreDf08LXfdKLBpePCpqitGDSeSRW7TfozM3pl0Fnv3YRnVYH9xKI6xlm0j9t/etYgNAXem11UB99FAqxz78L2Rcre1LIZDMrK7YlvENA=[/tex],且[tex=2.429x1.429]79SmwT+8J9VTqKDgDEyFqyq/RV3jccSxj4F/gfqSdMY=[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处连续,试证(1)若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=3.714x1.214]O1wR5EdmD4D6tSurboI5HQ==[/tex]处有极值,则该极值为极小值;(2)若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处有极值,问该极值是极大还是极小?

    • 4

      设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 连续, 且积分 [tex=8.5x2.786]BL7n5ddwJNHAhb4R+nxZA5ywU1gR80QQQ33J/mBX1n0oq5p5lu1KM79R224W0TLc[/tex] 与 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 无关. 求 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex].