若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]点可导,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]点不可导,证明函数[tex=7.214x1.357]hcdVQpdxM9qj0RdpAAmxT/RvLYsj+nLAffSD2trymtM=[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]点不可导
举一反三
- 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]点都不可导,能否断定他们的和函数[tex=7.214x1.357]hcdVQpdxM9qj0RdpAAmxT/RvLYsj+nLAffSD2trymtM=[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]点不可导?
- 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]点可导,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]点不可导,它们的积[tex=6.857x1.357]pdgJqg9kw4AJxIC67iHq3fQiHp3E8NBx7u4KlBZcoOQ=[/tex]的可导情况怎么样?
- 若函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]处可导,而函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 处不可导,则 [tex=15.071x1.357]5t7PcyjUqw0iaDVke9mS/kmCydTwD2HwWvECxPhY3zMm586FHnGswOPKmESbPQgp[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 处 A: 都不可导 B: 都可导 C: 恰有一个可导 D: 至少有一个可导
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 处连续,且 [tex=3.0x1.357]cypcU7avYk0RUyqIXzWNpsMPrQM+BZAxmWTqhMi8V6U=[/tex]在 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 处可导,证明[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 处也可导.
- 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=3.714x1.357]jFFc4JrOxTWSWzcB0lJ5MPRgWkZB8bHX773CqvzaZAE=[/tex]有导数,而[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]点没有导数,则复合函数[tex=5.929x1.357]876opGihAcL+xgcayZZ1/A==[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]点是否可导?