若∫f(x)dx=e[sup]-x2[/]+c,则f(x)=()
A: -2xe-x2
B: -xe-x2
C: 2xe-x2
D: xe-x2
A: -2xe-x2
B: -xe-x2
C: 2xe-x2
D: xe-x2
举一反三
- 设(d/dx)f(x)=g(x),h(x)=x[sup]2[/],则(d/dx)f[h(x)]等于:() A: g(x<sup>2</sup>) B: 2xg(x) C: x<sup>2</sup>g(x<sup>2</sup>) D: 2xg(x<sup>2</sup>)
- 设(d/dx)f(x)=g(x),h(x)=x[sup]2[/],则(d/dx)f[h(x)]等于:() A: Ag(x<sup>2</sup>) B: B2xg(x) C: Cx<sup>2</sup>g(x<sup>2</sup>) D: D2xg(x<sup>2</sup>)
- 设f(x,y)=x[sup]2[/]-y,则f(xy,x+y)=( )。 A: x<sup>2</sup>-x-y B: x<sup>2</sup>y<sup>2</sup>-x-y C: x+y-x<sup>2</sup>y<sup>2</sup> D: (x+y)<sup>2</sup>-xy
- 设∫xf(x)dx=arcsinx+C<sub>1</sub>,则∫[1/f(x)]dx=()。 A: (1-x<sup>2</sup>)<sup>3/2</sup>/3+C B: -(1-x<sup>2</sup>)<sup>3/2</sup>/3+C C: (1+x<sup>2</sup>)<sup>3/2</sup>/3+C D: (1+x<sup>2</sup>)<sup>2/3</sup>/3+C
- 若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:() A: (f″(x)f(x)-[f′(x)]<sup>2</sup>)/[f(x)]<sup>2</sup> B: f″(x)/f′(x) C: (f″(x)f(x)+[f′(x)]<sup>2</sup>)/[f(x)]<sup>2</sup> D: ln″[f(x)]·f″(x)