• 2022-06-16
    以[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]表示全部连续实函数[tex=4.929x1.286]AEZ0g03TXCw+FBTMoyL6dKzcmvHskiWEzJqyQzypyeclVrAs7e9mhmYc+Of0MhRI[/tex]组成的集合. 定义[tex=17.429x1.357]sVQTMpMD5CKV1gdwyc3Qk+3hLKr3qBegYfgTz/23aV44gwx05dOGuLcnuzoX+4jpYXkJ73jNWuyb/e5ieOgOGQ==[/tex], 对于[tex=6.714x1.357]f0oyRAI1bb/olQhASRhHd+r8UMZlFbUADcfkg6j+nz8lLaDb6K6Pb2CEiybtfC3Y[/tex]. 求证[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]由此成为含幺交换环. 试问[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]是否为整环? 是否有幂零元? 决定环[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]的单位群.
  • 直接验证[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]是有单位元的交换环, 但非整环. 注意[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]与[tex=3.5x1.357]pJJM3f6+aEUrKSEy5i9ZriEay08IuUJOHxUV5clMjdE=[/tex]的区别.[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]无非零的幂零元. [tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]的单位群为[tex=12.714x1.286]FJ33Pp+Olx5nlBYpsyPWiEoapNOCmgrf7VPk/tt94N4Umy/KsfLT93Coxx1+W63lmkj/dGq23TvVjGocHyiafyH6u0BehjkEZn2GLqejjmc=[/tex].

    举一反三

    内容

    • 0

      确定下列集合的基数.(1)有序偶:[tex=2.214x1.357]+smIHLjIglC7odyb4QS5dg==[/tex]的全体所构成的集合,其中[tex=0.571x0.786]7G1MINzwputr5mgALyjQfA==[/tex],[tex=0.429x1.0]dX3JVuFw9r8t2KlWf+/Z+A==[/tex]为实数;(2)[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]元实函数集合;(3)各分量为实数的[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵集合.

    • 1

      设正值函数[tex=5.786x1.357]TEOAvOMaMnhCRfweKFea7OWrek+AJc1s0/CvAlORKBw=[/tex], 记[tex=13.429x2.714]EzawhgSMUVyzL2N25KZLju5G5XXPvwaBqts4KK4gkiOETJ2G/3Vln6ZWM6V5X4sdPMSRA5JtbU+hw/vC//HmVw==[/tex],则[tex=3.286x1.357]FbZ9Y+ZT23KJOAg78qgOrA==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内零点个数为[input=type:blank,size:4][/input]。 A: 0 B: 1 C: 2 D: 3

    • 2

      设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在闭区间[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在开区间[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,且[tex=4.071x1.429]yApvS3TPe/+BmYN+KyWzUQVaTMZ7m9ZcCA6zHprNVEw=[/tex].若极限[tex=6.0x2.5]ENxIatiC2yqgaopSQCG83ot0R/LK5k2mSjjE1cLKXi/qJocsT46+O8UmwFGxr2v74VVBDoaYerWM2UTeaco/kw==[/tex]存在,证明:(1)在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内,[tex=3.714x1.357]mXvJ+AdSx51b9k85jFWYgw==[/tex];(2)在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内存在一点[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex], 使[tex=7.643x3.071]DXr6FYxmXkcHa1uxiFlDRNwqMqhmUu5jPGZYAeybFzf4pK//IwJtUhuicFLCu2Qd6Tsfw6vkiZMqFeus+MXXz7irmUs+DS1U44Zb6272okU=[/tex];(3)在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内存在与(2)中[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]相异的点[tex=0.5x1.0]x1bygMLZjErpcp7AR7KkLQ==[/tex],使[tex=13.643x2.857]TCX+T7GT0X++9ypgx1BKL1gyTW1BNVSx8FITfGuS0ZoA6EyLq2CLjNZ8fzppmvxbUpqi2vez+3S35b6+0JzrzY7ReRKcl4unIEi9qVOkiAaXdHBg3V/qZYQSahSOKWXr[/tex]

    • 3

      判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]

    • 4

      下列函数是哪些函数复合而成的?(1)[tex=4.214x1.286]6PuLCl/TwscTl61WSePGog==[/tex];(2)[tex=5.214x1.286]+mZ2Cm2OprRKGTGg0iqmyZx+4lZ796PxrSQNx30R9UU=[/tex];(3)[tex=4.214x1.357]jTbrMH55vzOFOJlLSnfh103OHFmRhIjXZGzPnfweOX0=[/tex];(4)[tex=6.071x1.286]W2A0mViHY0pK74wEByr6ED5K+AKV/pxHaeQdYGQBxwc=[/tex];(5)[tex=6.714x1.429]8up/G1s+GteD9ejcGkFVmYl3TTtTik5kuwrPDCv0JkbGIWyY33cnaw7XtBiPcSnh[/tex];(6)[tex=5.714x1.286]APaFs2rWyubdkzLcUVVxVJSSAsLEOtXn4KjnToE2BQA=[/tex];