以[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]表示全部连续实函数[tex=4.929x1.286]AEZ0g03TXCw+FBTMoyL6dKzcmvHskiWEzJqyQzypyeclVrAs7e9mhmYc+Of0MhRI[/tex]组成的集合. 定义[tex=17.429x1.357]sVQTMpMD5CKV1gdwyc3Qk+3hLKr3qBegYfgTz/23aV44gwx05dOGuLcnuzoX+4jpYXkJ73jNWuyb/e5ieOgOGQ==[/tex], 对于[tex=6.714x1.357]f0oyRAI1bb/olQhASRhHd+r8UMZlFbUADcfkg6j+nz8lLaDb6K6Pb2CEiybtfC3Y[/tex]. 求证[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]由此成为含幺交换环. 试问[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]是否为整环? 是否有幂零元? 决定环[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]的单位群.
以[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]表示全部连续实函数[tex=4.929x1.286]AEZ0g03TXCw+FBTMoyL6dKzcmvHskiWEzJqyQzypyeclVrAs7e9mhmYc+Of0MhRI[/tex]组成的集合. 定义[tex=17.429x1.357]sVQTMpMD5CKV1gdwyc3Qk+3hLKr3qBegYfgTz/23aV44gwx05dOGuLcnuzoX+4jpYXkJ73jNWuyb/e5ieOgOGQ==[/tex], 对于[tex=6.714x1.357]f0oyRAI1bb/olQhASRhHd+r8UMZlFbUADcfkg6j+nz8lLaDb6K6Pb2CEiybtfC3Y[/tex]. 求证[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]由此成为含幺交换环. 试问[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]是否为整环? 是否有幂零元? 决定环[tex=2.214x1.357]qz+k3vdu/UhOgvYpIkjtiQ==[/tex]的单位群.
1