举一反三
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级可逆矩阵,证明:如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可对角化,那么[tex=3.286x1.429]l5sF9EhDX0KUFjwu7SC5JQ==[/tex]都可对角化。
- 证明:如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正交矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是上三角矩阵,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是对角矩阵,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的主对角元为1或-1.
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级可逆矩阵,证明:如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]有特征值,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值不等于0.
- 证明:如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可对角化,那么[tex=2.571x1.143]d4FvFJPVDa3TBAR1QNehcVrKQno/HhW4/ZpS1g437Ug=[/tex].
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级对称矩阵,证明:如果[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上主对角元全为1的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级上三角矩阵,那么[tex=2.571x1.143]0fnjW85PDzMA1plt4TcKcg==[/tex]与[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]阶顺序主子式相等,[tex=5.857x1.214]I5SGjTr5mzU5Ceq/sb8fsMww7wbMal8t8RY5w2pUkfk=[/tex]。
内容
- 0
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵。证明:如果[tex=1.429x1.0]id8CqLD3sKgZOEL0mYn1xA==[/tex]中任意非零列向量都是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征向量,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]一定是数量矩阵。
- 1
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵,[tex=5.357x1.214]0FbTjvkZ+c2o52PxjJD2Wld/F7Un6vh0QdjWNakkuPaAnAGbx7iv+u9RZJebrxCx[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征多项式在复数域中的全部根,求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的伴随矩阵[tex=1.143x1.071]Z+TPszFO7LPa8KJ9E9RUwQ==[/tex]的特征多项式在复数域中的全部根。
- 2
证明:如果数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级对称矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的顺序主子式全不为0,那么存在[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上主对角元全为1的上三角矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与主对角元全不为0的对角矩阵[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex],使得[tex=4.214x1.143]gdq/daeB4gLJDSyW2xB5BRk/ecdE1RWzda9qZg0tjoU=[/tex];并且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的这种分解式是唯一的。
- 3
证明:如果数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]满足[tex=6.643x1.429]oCpvLyGD8hllYcsM3cYSLWtvPKGckJqIibvm40exWHI=[/tex],那么[tex=3.857x1.357]/ErxrDUA0p2I1qrW8TNM9Q==[/tex].
- 4
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正交矩阵,证明:如果[tex=3.429x1.357]KfxiXgR+wZCad+SOlQefBQ==[/tex],那么-1是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]得一个特征值。