已知函数f(x)在(-∞,+∞)上单调增加,函数g(x)在(-∞,+∞)上单调减少,则在(-∞,+∞)上单调减少的复合函数是()
A: f[-g(x)]
B: g[f(x)]
C: f[f(x)]
D: g[g(x)]
A: f[-g(x)]
B: g[f(x)]
C: f[f(x)]
D: g[g(x)]
举一反三
- 设函数f(t)连续,t∈[-a,a],f(t)>0,且则在[-a,a]内必有() A: g′(x)=C(常数) B: g′(x)是单调增加的 C: g′(x)是单调减少的 D: g′(x)是函数,但不单调
- 2.下列结论中,不正确的是()。 A: 若$f,g$在$(-\infty ,+\infty )$上都是单调增函数,则$f+g$与$f\cdot g$也是单调增函数 B: 若$f,g$在$(-\infty ,+\infty )$上都是单调增函数,则$\max (f,g)$与$\min(f,g)$也是单调增函数 C: 若$f,\ g,\ \varphi $在$(-\infty ,+\infty )$上都是单调增函数,且$g(x)\le \varphi (x)\le f(x)$,则$g(g(x))\le \varphi (\varphi (x))\le f(f(x))$ D: 若$f(x)$是$(-\infty ,+\infty )$上的奇函数,且在$[0,+\infty )$上单调增加, 则$f(x)$在$(-\infty ,+\infty )$上单调增加
- 设f为R上的单调函数,定义f(x)=g(x+0),则g在R上
- f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)=g′(x),则f(x)与g(x)满足( ) A: f(x)=g(x) B: f(x)=g(x)=0 C: f(x)-g(x)为常数函数 D: f(x)+g(x)为常数函数
- 设函数f(x),g(x)在[a,b]上连续且f(a)=g(a),在(a,b)上可导且f′(x)>g′(x),则当a<x<b时,有( ) A: f(x)>g(x) B: f(x)<g(x) C: f(x)+g(a)>g(x)+f(a) D: f(x)+g(b)>g(x)+g(b)