试求经过坐标原点,并与[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴垂直平面的向量形式点法式方程.
举一反三
- 试求经过不共线三点[tex=5.214x1.357]Au37sa+MLAXv1YWB/duZP3XoxdUsLE8lhN9IfirONDY=[/tex]平面的向量形式点法式方程.[br][/br]
- 已知向量 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 与向量 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex] 及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴垂直.其中 [tex=8.357x1.357]T+BftPJon/Au4+ytgItUOarv6miDh3HAVIRylOqDcGo=[/tex],求向量 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex].
- 设平面图形 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]由抛物线 [tex=3.571x1.429]9XJRnUCrj1gseCVixk7Trw==[/tex] 和 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴围成,试求[tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转所得旋转体的体积
- 过原点作曲线 [tex=3.071x1.214]MBM6FkRKhubflZJqDSdnSQ==[/tex] 的切线, 求由切线, 曲线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围平面图形, 分别绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴和 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴 旋转所得旋转体的体积.
- 试求经过点[tex=3.214x1.357]xCOo2jTUIOAWNrgnnWmPjA==[/tex], 与三个坐标平面均相切球面的方程.