• 2022-06-07
    若\(f\)和\(g\)在区域\(D\)上可积,且\( f \le g \) ,则\( \int\!\!\!\int\limits_D {fd\sigma } \)和\( \int\!\!\!\int\limits_D {gd\sigma } \)的大小关系为( )。
    A: \( \le \)
    B: \( \ge \)
    C:
  • A

    内容

    • 0

      设\(D\)为\( 1 \le x \le 2 \) 和\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D { { x^2}{e^{2y}}} d\sigma \) =\( {6 \over 7}\left( { { e^2} - 1} \right) \) 。

    • 1

      若在有界闭区域D上,\( f\left( {x,y} \right) \equiv 1 \),\( \sigma \)为D的面积,则\( \int\!\!\!\int\limits_D {f\left( {x,y} \right)d\sigma } \)=( ) A: 0 B: 1 C: 不存在 D: \( \sigma \)

    • 2

      设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。

    • 3

      设D:\(0 \le x \le \pi ,0 \le y \le {\pi \over 2}\),则\(\int\!\!\!\int\limits_D {sinxcosydxdy} \)的值为______

    • 4

      设\(D = \left\{ {(x,y)\left| { { x^2} + {y^2} \le 4,x \ge 0,y \ge 0} \right.} \right\}\),则\(\int\!\!\!\int\limits_D {(x + y)} d\sigma = \) A: \(0\) B: \( { { 8} \over 3}\) C: \( { { 16} \over 3}\) D: \( { { 32} \over 3}\)