求函数 y=tan2(1+2x2)的微分:
A: 8x×tan(1-2x2)×sec2(1+2x2)dx .
B: 8x×tan(1+2x2)×sec2(1+2x2)dx .
C: -8x×tan(1+2x2)×sec2(1+2x2)dx .
D: 8x×tan(1+2x2)×sec2(1-2x2)dx .
A: 8x×tan(1-2x2)×sec2(1+2x2)dx .
B: 8x×tan(1+2x2)×sec2(1+2x2)dx .
C: -8x×tan(1+2x2)×sec2(1+2x2)dx .
D: 8x×tan(1+2x2)×sec2(1-2x2)dx .
举一反三
- 3. 已知函数$y= \tan x$,则$y''(x) =$( )。 A: $ - \sec ^ 2 x \tan x$ B: $ \sec ^ 2 x \tan x$ C: $ - 2 \sec ^ 2 x \tan x$ D: $2 \sec ^2 x \tan x$
- \(\int { { {\sec }^{3}}xdx}\)=( ) A: \(\frac{1}{2}\sec x\cot x-\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) B: \(\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) C: \(-\frac{1}{2}\csc x\tan x+\frac{1}{2}\ln \left| \sec x-\cot x \right|+C\) D: \(-\frac{1}{2}\sec x\tan x-\frac{1}{2}\ln \left| \csc x+\tan x \right|+C\)
- 设 $y=\tan x^2$,则 $y'=$( ). A: $\sec x^2$ B: $\sec^2 x^2$ C: $2x\sec^2 x$ D: $2x\sec^2 x^2$
- \( {\sec ^2}x - {\tan ^2}x = \)______. ______
- \( {\sec ^2}x - {\tan ^2}x = \)______. ______