• 2022-06-07
    设[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]是一个奇数. 证明:[tex=1.071x1.0]YIRGFczM5Qfvzt6XjJW6wQ==[/tex]阶群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]必有[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]阶子群.
  • 证:由[tex=3.0x1.214]I9psdUGBOrfOzNdHy0WXOA==[/tex]定理可知[tex=1.071x1.0]YIRGFczM5Qfvzt6XjJW6wQ==[/tex]阶群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]与其上的一个[tex=1.071x1.0]YIRGFczM5Qfvzt6XjJW6wQ==[/tex]阶的 [tex=1.071x1.0]YIRGFczM5Qfvzt6XjJW6wQ==[/tex]次置换群 [tex=0.786x1.143]3go8UcZXyYUwPOwYloc1nw==[/tex]同构.由于任一有限群中阶大于 2 的元必成对出现,故偶数阶群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中必有某 2 阶元[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]存在,且[tex=3.071x1.214]F2cdtz1qYfpKfg7eI1K9Ew==[/tex] 故[tex=3.0x1.214]vS0lluURCjcr8AojqP/Su8EDP/VvIj37/zmJQYyEbho=[/tex],有[p=align:center][tex=3.786x1.286]/cXH4YlIEN7RzrRSUGfTEP/di3ItLsx2Zjvsj4xcp44=[/tex]再取[tex=2.429x1.214]4ayYkmgOMPWlI+6GbS/UOg==[/tex]且[tex=6.071x1.286]Ckg3z14fOcXUBES1ceEBkr5bpYaGn+Psuje+NAMgV4dmYjP8hhSGI0k8ZkIdyfKO[/tex],则由[tex=2.786x1.214]5sG0J1dYzrSkXffV2BB1Hw==[/tex]知[p=align:center][tex=12.714x1.286]gl1uH1KmxYhwMtIYuFylPvGCOE8t73sh9+wZjALRJu9nweNwmo2unm6trvWxviTsx0jfFMYSv+yWZOFXyy252lShDzTykPZ6W7wMQQtYwRo=[/tex]如此进行下去,而[tex=3.143x1.357]XnvPnFXKk/+rf6VVKVGwqw==[/tex],故可继续到第[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]步,且[p=align:center][tex=15.5x1.357]GubkItOMFjmVHYOjLF3it0Us+3r+9zCYDMeXdhvtUDnA9mnU/nSjxVDTNbV4kANi0vwpfGDeS3ytw7msHyBL7WrHHv1YPmQ1+tBhA+bkwtjnBvR3Hp4j4yuWr2EMX01d[/tex]因[p=align:center][tex=16.429x1.5]ocYbHvFWMuHInqPtQVV0bFuqtqQ7pqusOo8H6L+rj26Dpwb3U8ZB37FZRopt0MIKvPI0gBzuk2kfZCBUMIDI1lnooG8YXZXMNectdDI9p2o=[/tex]所以可令置换[p=align:center][tex=22.714x2.357]7mY9Nk8xLBR+yZNdnm4uRiDIyzkaJbtczp3JrEnq4wKkFfoQiti8qYvIvpAWWZfAFesjfYjTHD6NdTY3Sf8si4iHKvM6HE1Ae7vv837tT5g8kyFazx0W6TAv+6O4R4uK3IIHtDUxFvJKCNcxOBI1kuOpcL4tKpM+vNUvQYoorVvNg1RDKiVHn7qmbigbhCkMMkrM0GFKzDrTQI3obC8uHHaAHS5ro7ZyZL45ug035gHtvwtzoPT+bqETUBM+HbyznMHoaB4iCUSGp4PC7j6ZDw==[/tex]且[tex=15.786x1.429]FPUvHZtv/rmAaOJcPsUfg5kHtuwo+uA+N1QX+MyjU5GlsKkvfE1f6cx37jVVxox3LZ3f/xHHnDtJ5HjJdUrErIK3OS02uPYlc4Jo4WPO53EHhAJY3WaMUmlJbXRGC7hgdjum7LZ9qnsX0STv9EttgjpDs8Y9nLBO+dsQtSbS5x4=[/tex]由题设[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]为奇数,故[tex=0.786x1.143]3go8UcZXyYUwPOwYloc1nw==[/tex] 中有奇置换,从而由定理知 [tex=0.786x1.143]3go8UcZXyYUwPOwYloc1nw==[/tex]中奇偶置换各占一半.又由于[tex=2.857x1.571]Ki140YlkP6doVgEWWG2doQbHDC4i1x2snJuXlVa8kV0=[/tex],故[tex=3.143x1.429]xYiRsVkFGbKD6kopeOXmLA==[/tex],从而其[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]个偶置换作成[tex=0.786x1.143]3go8UcZXyYUwPOwYloc1nw==[/tex]的一个子群.所以,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]也有[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]阶子群存在.

    内容

    • 0

      [tex=0.643x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶循环子群当且仅当 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶元.再证 :[tex=2.071x1.357]uDUdwqeJnLoclMiXU3BK6A==[/tex] 是素数 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 阶群,则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是循环群.[tex=2.071x1.357]leZ2dm1/uybUxLAV8A9gwA==[/tex] 是[tex=1.071x1.214]QNlCeTWiPvK4dPwBORP+PQ==[/tex]阶非交换群[tex=1.0x1.0]zdNN1O/FkAWt1pjWeDlxUg==[/tex]素数,则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 必有[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 阶子群.

    • 1

      设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶自补图,证明 [tex=3.0x1.0]DhaELq4wJxZJd2DJ8bkZwQ==[/tex] 或 [tex=3.714x1.143]TKXUKian/ZFe5Q8NhgCkUQ==[/tex] ,其中 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 为正整数.

    • 2

      设[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个子群,证明:[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的特征子群,当且仅当对[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的每个自同构[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]都是[tex=3.786x1.357]/hUAIv2XJLX3YXBqW5nP/A==[/tex].

    • 3

      举例说明, 如果 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 的正规子群,[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群, 则 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 不一定是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群.

    • 4

      设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 为交换群, [tex=3.929x1.357]GrT1Ckri1vTSSUahAGsljQ==[/tex]是一个正整数. 证明: 如果 [tex=2.357x1.357]n8GQc38XvmGZfZ5nwx3wAA==[/tex], 则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 有 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]阶子群.