已知函数f(x-1)是偶函数,当x2>x1>-1时,[f(x2)-f(x1)](x2-x1)<0恒成立,设a=f(-2),b=f(-23),c=f(3),则a,b,c的大小关系( )
因为函数f(x-1)是偶函数,所以f(-x-1)=f(x-1),故函数f(x)的图象关于直线x=-1对称.又当x2>x1>-1时,[f(x2)-f(x1)](x2-x1)<0恒成立,所以函数f(x)在(-1,+∞)上单调递减,a=f(-2)=f(-1-1)=f(1-1)=f(0),因为-1<-23<0<3,f(x)在(-1,+∞)上单调递减,所以f(3)<f(0)<f(-23),即c<a<b.故选D.
举一反三
- 已知函数f(x)=1/(2^x-1)+1/2,证明当x>0时,f(x)>0
- 已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+x2,则f′(1)=______. A: -1 B: -2 C: 1 D: 2
- 设函数f(x)=ax2+bx+c(c>0),且f(1)=-a/2求证:函数f(x)有两个零点设x1,x2是函数f(x)的两个零点,求|x
- 若函数f(x)满足条件:当x1,x2∈[-1,1]时,有|f(x1)-f(x2)|≤3|x1-x2|成立,则称f(x)∈Ω.对于函数g(x)=x3,h(x)=1x+2,有( )
- 函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数对应的方程有()个实根, 并指出它们所在的区间. A: f′(x)=0有三个实根,且x1∈(1, 2),x2∈(2, 3),x3∈(3, 4). B: f′(x)=0有两个实根,且x1∈(1, 2),x2∈(2, 3). C: f′(x)=0有一个实根,且x1∈(1, 2). D: f′(x)=0没有实根.
内容
- 0
【单选题】用if语句表示如下分段函数f(x),下面程序不正确的是()。 f(x)=2x+1 x>=1 f(x)=3x/(x-1) x<1 A. if(x>=1):f=2*x+1 f=3*x/(x-1) B. if(x>=1):f=2*x+1 if(x<1):f=3*x/(x-1) C. f=2*x+1 if(x<1):f=3*x/(x-1) D. if(x<1):f=3*x/(x-1) else:f=2*x+1
- 1
设随机变量的密度函数f(x)如下:f(x)=x,0≤x<1;f(x)=2-x,1≤x<2;f(x)=0,其他.则(1)P(X≤1.5)=();(2)P(x>3)=();(3)F(2)=().
- 2
若函数f(x)在开区间(a,b)内可导,且对任意两点x1,x2∈(a,b),恒有|f(x1)-f(x2)|≤(x2-x1)2,则必有()。 A: f’(x)≠0 B: f’(x)=x C: f(x)=x D: f(x)=C(常数)
- 3
设函数f(x)=x2(x-1)(x-2),则f"(x)的零点个数为 A: 0 B: 1 C: 2 D: 3
- 4
求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 其中fun的作用是: