• 2022-06-07
    模 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 剩余类环 [tex=1.357x1.214]uOaDd4d1D0CW/9JuHUXnKLl2GaIFDM+Am7HUbgbGRuk=[/tex] 的每个理想都是主理想.
  • 证明   设 [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 为 [tex=1.357x1.214]uOaDd4d1D0CW/9JuHUXnKLl2GaIFDM+Am7HUbgbGRuk=[/tex]的任一个理想, 则 [tex=2.5x1.357]3tc+e5gWWjNBgGIemMOkXw==[/tex] 是循环群, 从而[p=align:center][tex=2.857x1.357]y7u06Bigdyqoku22bu31Dvb3algkPTRzYo4LXXhUyHY=[/tex]所以 [tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex]为主理想.

    内容

    • 0

      设[tex=2.286x1.071]Rm4cSxRO7ccGFsIroiUmNOxBi2+nDFKXHIuG7UU5XTo=[/tex],[tex=2.643x1.286]3TLWbzxkv7Jh2sFlcFYVVw==[/tex],在[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex]中定义关系[tex=0.786x0.643]4aQPn8fjRjn8kPZRhhr7Kw==[/tex],[tex=2.357x1.0]FUQ0eMsy0vmcbGQIiuy91Q==[/tex],若[tex=6.357x1.357]SHEvfG3gEpGPxcP9eqa+jpwVP6OjVn6bP7iz49o4B+o=[/tex],将对此关系的商集合记为 [tex=1.357x1.214]uOaDd4d1D0CW/9JuHUXnKLl2GaIFDM+Am7HUbgbGRuk=[/tex](或 [tex=2.786x1.357]Ny2JlfNBkMjJlReu7/0JZjg6+Du17YgvZ5unBBPdO8s=[/tex]),试求[tex=1.357x1.214]uOaDd4d1D0CW/9JuHUXnKLl2GaIFDM+Am7HUbgbGRuk=[/tex]中元素个数。

    • 1

      已知一棵度为[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]的树中有[tex=1.0x1.0]keoWssVvFvI42Lgp0VxVMw==[/tex]个度为 1 的结点, [tex=1.0x1.0]tyoaGSYxf+aTG7Fnj9/89w==[/tex]个度为 2 的结点, [tex=2.786x0.786]kj3qFa8z0JqK3BT1FnLanw==[/tex],[tex=1.214x1.0]PWR2Ga1ilcGd3QtIAoQucA==[/tex]个度为[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]的结点,问该树中有多少个叶子结点?

    • 2

      已知公式:[tex=9.786x2.714]vJVCkDDnr8Xcjq5KfV6ziaioY+XA3sHNk8dSiHzB1Dc9duaaZZHCpG5pJwyNkPD5AdWPEHP1jHvSIrFB0IMwRV23MAbsygcqpKuUBSVI29A=[/tex].[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex] 为 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部零点个数,[tex=0.857x1.0]fqqgtXjxaAvBmTcUizivOQ==[/tex] 为 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部极点个数. [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 级零点或 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 级极点要算作 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 个零点或 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 个极点.利用公式计算下列积分:[tex=4.5x2.786]69UAxZ5i7sBmKfD86KLNgP28GuxSHAdFaGugtipp2XJn5q1QbTRGP5wfH0dQB8d2[/tex].

    • 3

      已知公式:[tex=9.786x2.714]vJVCkDDnr8Xcjq5KfV6ziaioY+XA3sHNk8dSiHzB1Dc9duaaZZHCpG5pJwyNkPD5AdWPEHP1jHvSIrFB0IMwRV23MAbsygcqpKuUBSVI29A=[/tex].[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex] 为 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部零点个数,[tex=0.857x1.0]fqqgtXjxaAvBmTcUizivOQ==[/tex] 为 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部极点个数. [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 级零点或 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 级极点要算作 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 个零点或 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 个极点.利用公式计算下列积分:[tex=5.0x3.571]kXQg2VmGwJ9any51M6jLlj7k168j8McYXQuG3FHgCkr1dNfy4KTz77FQSyY57nkJyWrA3VlP/AaGMrVePWeXCg==[/tex].

    • 4

      已知公式:[tex=9.786x2.714]vJVCkDDnr8Xcjq5KfV6ziaioY+XA3sHNk8dSiHzB1Dc9duaaZZHCpG5pJwyNkPD5AdWPEHP1jHvSIrFB0IMwRV23MAbsygcqpKuUBSVI29A=[/tex].[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex] 为 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部零点个数,[tex=0.857x1.0]fqqgtXjxaAvBmTcUizivOQ==[/tex] 为 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部极点个数. [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 级零点或 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 级极点要算作 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 个零点或 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 个极点.利用公式计算下列积分:[tex=5.5x3.571]kXQg2VmGwJ9any51M6jLlsAzNuSU+5gNSwNrQAlfprLSbHW+Nv8Id7+zlYDGUaWPgBsL3Ich8jqocyIaAdRHew==[/tex].