• 2022-06-07
    设[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]为距离空间,则[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]中的基本列是有界的。
  • 本题结论显然成立。

    举一反三

    内容

    • 0

      设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]在圆域[tex=4.5x1.429]ptnhK+BqPbYzfoYOryGrkA==[/tex]上服从均匀分布(1)求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]的相关系数[tex=0.571x1.0]BMX8X5xI0h1MuijqrEhCyw==[/tex];(2)问[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是否独立.

    • 1

      设随机变量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的密度函数为 [tex=11.429x2.929]w70lG1NUs5ZRhKHaXMaifbrZnHR/JqtNeM0xCilf75iO1C2i275P9z+W6/aetwU/bpm22T9OnUXlic2+vU+fP2pYiGXyYRlHBGqhEhJuRGA=[/tex]试求:  [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的分布函数。

    • 2

      设[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]是赋范线性空间[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]上的线性泛函, 则[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]连续的充要条件是:[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]的零空间[tex=2.071x1.357]ACaVOH6l1K4ykFJiDz3UOA==[/tex]为[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的闭子空间

    • 3

      设[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]服从参数为 1 的指数分布,[tex=2.286x1.0]9/9iwGqXp5QMYqkNTltYDNEowzysbRa2vywE4TxIMeI=[/tex],求[tex=2.214x1.357]ocoZdV18P73QTNWKFIScyg==[/tex].

    • 4

      设随机变量  [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的密度函数为 [tex=11.071x2.429]b0AejGK8cZqfdbG3Tux+udRW9Fp8cAkzLyQb1JEUbnV4/ZDO7AjHjsHn+NZy68TUpK/GwMftqSPDXUTx50aVrQ==[/tex], 求 (1) 常数 [tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex] 的值;(2) [tex=7.857x2.786]YjcHvRQshYm9dgcyyroPhKMhp+fPT4ss3eOw+rSlE6+9ylk76knio7NwOyX8RGfv[/tex]; (3) [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的分布函数 [tex=2.0x1.357]XiwLhO8FnROM2q2R1tcKSw==[/tex]