证明平面的仿射变换如果把某个半径为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的圆周变成半径为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的圆周,则它是一个等距变换.
举一反三
- 证明:任意一个秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的矩阵都可以表为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个秩为1的矩阵之和。
- 证明: 任意一个秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的矩阵都可以表示为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 个秩为 1 的矩阵之和.
- [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个秩为 1 的矩阵之和为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]是否成立?若成立请证明,否则举反例。
- 证明:如果秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的向量组可以由它的[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个向量线性表出,则这[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个向量构成这向量组的一个极大线性无关组.
- 证秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的矩阵可表示为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个秩为 1 的矩阵之和.