举一反三
- 证明:任意一个秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的矩阵都可以表为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个秩为1的矩阵之和。
- 证明: 任意一个秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的矩阵都可以表示为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 个秩为 1 的矩阵之和.
- 求证: 秩等于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的矩阵可以表示为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 个秩等于 1 的矩阵之和, 但不能 表示为少于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 个秩为 1 的矩阵之和.
- 证秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的矩阵可表示为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个秩为 1 的矩阵之和.
- 证明: 秩等于[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的对称矩阵可以表为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个秩等于 1 的对称矩阵之和.
内容
- 0
求证: 秩等于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的对称矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 等于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个秩等于 1 的对称矩阵之和.
- 1
证明:如果秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的向量组可以由它的[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个向量线性表出,则这[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个向量构成这向量组的一个极大线性无关组.
- 2
证明:秩等于[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]的对称矩阵可以表成[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]个秩等于 1 的对称矩阵之和。
- 3
证明: 实对称矩阵 [tex=0.786x1.0]Gl8myqGBf3V5xKlLwXodGw==[/tex] 是秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的半正定阵的充要条件是, 存在秩等于 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的 [tex=2.286x1.071]qxUBJkw5pHPFqpR4rHoDwQ==[/tex] 矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使 [tex=3.357x1.143]rBiqGaSDVnQOpJm3gHRQdr95ppa2wBY12deY6FUqLHU=[/tex].
- 4
证明:秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的向量组中任意[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个线性无关的向量都构成它的一个极大线性无关组.