求下列二次曲线的切线方程,并且求出切点坐标。[tex=5.786x1.429]qN6ZYq77FMDkiCYHi9QN2cqhgu6qF6yBupmX7tyGyi0=[/tex]的切线平行于[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴。
举一反三
- 求曲线[tex=3.643x2.357]gtFPKV+bA1NEmbco+iU28g==[/tex]与[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴交点处的切线方程.
- 抛物线[tex=5.357x1.429]M3P0ca1ia3LZynihVJi44A==[/tex]在哪一点的切线平行于[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴?在哪一点的切线与[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴的交角为[tex=1.429x1.071]kkPuS3Ory55IdulItii60Q==[/tex]?
- 设有曲线 [tex=4.071x1.429]aq1wzRSZTme7NCreS9ZpVA==[/tex], 过原点作其切线, 求由此曲线、切线及 [tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex] 轴围成的平面图形绕 [tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex] 轴旋转一周所得的旋转体的表面积.
- 过曲线 [tex=5.429x1.5]hyPnTn+3TvS/y5P32FJC0/RtFN//zR51OT7wHuH1nRU=[/tex] 某点处 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 作切线,使之与曲线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围图形的面积为 [tex=1.714x2.357]eVdsEHeHDHCGLDq9Vddkb9uKCiAlrN0c3eeUvCGhVDU=[/tex](1) 求切点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的坐标及过 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的切线方程;(2) 求上述切线、曲线 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围图形绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴旋转成的旋转体体积.
- 求曲线[tex=4.857x1.429]tIem00ImQdFe95BA6+n77g==[/tex]的切线方程,使该切线平行于直线[tex=4.429x1.214]uKSihmdntUTBQV4mXohzyw==[/tex].