角谷静夫是日本的一位数学家,他所提出的角谷猜想是这样的:任意给出一个自然数N,如果它是偶数,则将它除以2(变成N/2);如果它是奇数,则将它乘以3再加上1(变成3N+1),然后重复上述过程。最后都无一例外地得到自然数“1”(确切的说是进入“1→4→2→1”的循环)。这一猜想的获得过程主要采用了()
A: A演绎推理
B: B论证推理
C: C归纳推理
D: D类比推理
A: A演绎推理
B: B论证推理
C: C归纳推理
D: D类比推理
举一反三
- 角谷静夫是日本的一位数学家,他所提出的角谷猜想是这样的: 任意给出一个自然数N,如果它是偶数,则将它除以2(变成N/2);如果它是奇数,则将它乘以3再加上1(变成3N+1),然后重复上述过程。最后都无一例外地得到自然数1(确切的说是进入1421的循环)。这一猜想的获得过程主要采用了: A: 演绎推理 B: 论证推理 C: 归纳推理 D: 类比推理
- 角谷静夫是日本的一位数学家,他所提出的角谷猜想是这样的:任意给出一个自然数N,如果它是偶数,则将它除以2(变成N/2);如果它是奇数,则将它乘以3再加上1(变成3N+1),然后重复上述过程。最后都无一例外地得到自然数“1”(确切的说是进入“1→4→2→1”的循环)。这一猜想的获得过程主要采用了() A: A演绎推理 B: B论证推理 C: C归纳推理 D: D类比推理
- 验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数n,若n为偶数,则将其除以2;若n为奇数,则将其乘以3,然后再加1。如此经过有限次运算后,总可以得到自然数1。人们把谷角静夫的这一发现叫做“谷角猜想”。
- 角谷猜想:任何一个正整数n,如果它是偶数则除以2,如果是奇数则乘以3加上1,这样得到一个新的整数,如继续进行上述处理,则最后得到的数一定是1。编写应用程序和小程序分别证明:所有的3至10000的数都符合上述规则。
- 任意取一个大于50的自然数,如果它是偶数,就除以2;如果它是奇数,就将它乘3之后再加1。这样反复运算,最终结果是多少?() A: 1 B: 2 C: 3