函数f(x)=(12)x与函数g(x)=log12x在(0,+∞)上的单调性为( )
举一反三
- 已知函数f(x)在(-∞,+∞)上单调增加,函数g(x)在(-∞,+∞)上单调减少,则在(-∞,+∞)上单调减少的复合函数是() A: f[-g(x)] B: g[f(x)] C: f[f(x)] D: g[g(x)]
- f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)=g′(x),则f(x)与g(x)满足( ) A: f(x)=g(x) B: f(x)=g(x)=0 C: f(x)-g(x)为常数函数 D: f(x)+g(x)为常数函数
- 已知f(x)是定义在区间(0,+∞)内的单调函数,且对∀x∈(0,∞),都有f[f(x)-lnx]=e+1,设f′(x)为f(x)的导函数,则函数g(x)=f(x)-f′(x)的零点个数为( )A.0B.lC.2D.3
- 【单选题】f(x) 与g(x) 是定义在 R 上的两个可导函数,若 f(x),g(x)在R上导数相等 ,则f(x) 与g(x) 满足() A. f(x)=g(x) B. f(x)-g(x)为常数 C. f(x)=g(x)=0 D. f(x)+g(x)为常数
- 设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。