3.考虑二元函数的下面4 条性质: ①函数在点处连续;②函数在点处两个偏导数连续;③函数在点处可微; ④函数在点处两个偏导数存在. 则下面结论正确的是365655bade8419b1b50f69b9d00107cb.png365655bade8419b1b50f69b9d00107cb.png637676dc17b408ee53ecdcd0f8cbde41.png365655bade8419b1b50f69b9d00107cb.png365655bade8419b1b50f69b9d00107cb.png637676dc17b408ee53ecdcd0f8cbde41.png365655bade8419b1b50f69b9d00107cb.png637676dc17b408ee53ecdcd0f8cbde41.png
举一反三
- f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
- 考虑二元函数f(x,y)的下面四个性质: (1)f(x,y)在点f(x,y)处连续; (2)f(x,y)在点f(x,y)处的两个偏导数连续; (3)f(x,y)在点f(x,y)处可微; (4)f(x,y)在点f(x,y)处的两个偏导数存在; 若用P=>Q表示可由性质P推出性质Q,则有.
- 设函数f(x)具有二阶连续导数,且f(x)>0,f′(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是()。 A: f(0)>1,f″(0)>0 B: f(0)>1,f″(0)<0 C: f(0)<1,f″(0)>0 D: f(0)<1,f″(0)<0
- 若函数z=f(x,y)在点p0(x0,y0)处的偏导数f′x,f′y连续,则函数f在点p0处可微。
- 当x^2+y^2≠0时,函数F(x,y)=1/(x^2+y^2),当x^2+y^2=0时,函数F(x,y)=0,则函数F(x,y)在点(0,0)处 A: 连续但偏导数不存在 B: 偏导数存在但不连续 C: 既不连续偏导数也不存在 D: 连续且偏导数存在