函数f(x)在x=x0处的极限不存在,则() A.f(x)在x=x0处必有定义 B.f(x)在x=x0处没有定义 C.f(x)在x=x0处及其附近没有定义 D.f(x)在x=x0处可能有定义,也可能无定义
举一反三
- 【单选题】函数f(x)在点x=x0处连续且取得极大值,则f(x)在x=x0处必有()。 A. f’(x0)=0 B. f’’(x0)<0 C. f(x0)=0且f’(x0)<0 D. f’(x0)=0或不存在
- 函数f(x)在x=x0处连续,x0为f(x)的极值点,则必有()。 A: f’(x0)=0 B: f’(x0)不等于0 C: f’(x0)不存在 D: f’(x0)=0或不存在
- 下列结论错误的是( ). A: 如果函数f(x)在点x=x0处连续,则f(x)在点x=x0处可导. B: 如果函数f(x)在点x=x0处不连续,则f(x)在点x=x0处不可导 C: 如果函数f(x)在点x=x0处可导,则f(x)在点x=x0处连续 D: 如果函数f(x)在点x=x0处不可导,则f(x)在点x=x0处也可能连续
- F(X)在X0点处有定义,是F(X)在X0处极限存在的()条件
- 设函数f(x)在点x0处取到极大值,则() A: f′(x)=0 B: f″(x)<0 C: f′(x)=0且f″(x)<0 D: f′(x)=0或不存在