举一反三
- [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 服从参数 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的指数分布,而 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 是服从 [tex=2.0x1.357]13hO1E7iMz89y/8d++Roag==[/tex]上的均匀分布的随机变量.求 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 的边缘密度函数.
- [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 服从参数 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的指数分布,而 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 是服从 [tex=2.0x1.357]13hO1E7iMz89y/8d++Roag==[/tex]上的均匀分布的随机变量.求 [tex=1.929x1.0]vVfLuNZHFtqwkH3I5PXF9g==[/tex] 时 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的条件期望.
- [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 服从参数 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的指数分布,而 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 是服从 [tex=2.0x1.357]13hO1E7iMz89y/8d++Roag==[/tex]上的均匀分布的随机变量.求 [tex=2.643x1.357]aikhN0DJgQzlD9+fBIp9pQ==[/tex] 的密度函数.
- [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 服从参数 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的指数分布,而 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 是服从 [tex=2.0x1.357]13hO1E7iMz89y/8d++Roag==[/tex]上的均匀分布的随机变量.求已知 [tex=1.857x1.214]rDLn1Qpf2FlaBXUmHX8PHw==[/tex] 时 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的条件密度函数.
- 设[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]服从参数为 1 的指数分布,[tex=2.286x1.0]9/9iwGqXp5QMYqkNTltYDNEowzysbRa2vywE4TxIMeI=[/tex],求[tex=2.214x1.357]ocoZdV18P73QTNWKFIScyg==[/tex].
内容
- 0
已知 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 服从[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]上的均匀分布, [tex=5.0x1.357]nwC5ktXh6CxchzB4uNrIlA==[/tex], 且 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 与 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex] 相互独立,求 [tex=2.643x1.357]aikhN0DJgQzlD9+fBIp9pQ==[/tex] 的密度函数.
- 1
设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 服从 (1, 2) 上的均匀分布,在[tex=2.214x1.0]kekET2EeELNWSBgl7e3NjQ==[/tex]的条件下,随机变量[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 的条件分布是参数为[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex] 的指数分布,证明:[tex=1.429x1.0]DSb1ocd5kTCW1oC/cbxjSA==[/tex] 服从参数为1 的指数分布.
- 2
设随机变量 X服从二项分布 [tex=3.786x1.357]L4TgfyMuoYCq1SFUeY4IXQ==[/tex], 求 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的分布函数,并作出它的图像
- 3
设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]独立,[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]在区间[tex=2.0x1.357]ypa7sVIsGi+dtDPUtrup2w==[/tex]上服从均匀分布,[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]服从指数分布[tex=1.786x1.357]awqvNHHPYkNPyosONmVKxg==[/tex],求二维随机变量[tex=2.643x1.357]aikhN0DJgQzlD9+fBIp9pQ==[/tex]的联合概率密度.
- 4
设随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]独立,[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]在区间[tex=2.0x1.357]ypa7sVIsGi+dtDPUtrup2w==[/tex]上服从均匀分布,[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]服从指数分布[tex=1.786x1.357]awqvNHHPYkNPyosONmVKxg==[/tex],求概率[tex=3.643x1.357]xOqWhxutW/jDEtv3HdF7DBtYx0Hk7e1l3Omnpa63lD0=[/tex].