举一反三
- 若\(A\)是正交矩阵,则\(\left| A \right| = 1\).
- 若\(A\)是正交矩阵,则\(\left| A \right| = 1\).
- 若\(A\)是正交矩阵,则\(\left| A \right| = 1\).
- 设\( \left| { { x_0}} \right| = 4 \),\( A \)为正交矩阵,则\( \left| {A{x_0}} \right| = \)______
- 设 \( A \)是 \( 3 \times 3 \)矩阵, \( B \)是 \( 4 \times 4 \)矩阵,且\( \left| A \right| = 1,\,\left| B \right| = - 2, \) 则\( \left| {\left| B \right|A} \right| = \) ______
内容
- 0
设\(n\)阶矩阵\(A\)的伴随矩阵为\({A^ * }\),若\(\left| A \right| = 0\),则\(\left| { { A^ * }} \right| \ne 0\).
- 1
设\( A \)为\( n \) 阶方阵, \( B \)是\( A \)经过若干次初等变换后得到的矩阵,则( ) A: \( \left| A \right| = \left| B \right| \) B: \( \left| A \right| \ne \left| B \right| \) C: 若\( \left| A \right| = 0 \) ,则必有 \( \left| B \right| = 0 \) D: 若\( \left| A \right| > 0 \),则一定有\( \left| B \right| > 0 \)
- 2
设\( A \)是3阶矩阵,若\( \left| {3A} \right| = 3 \),则\( \left| {2A} \right| = \)( ) A: 1 B: 2 C: \( {2 \over 3} \) D: \( {8 \over 9} \)
- 3
设\( {\bf{A}} \) 为三阶矩阵,\( { { \bf{A}}^*} \)是\( {\bf{A}} \)的伴随矩阵,且\( \left| {\bf{A}} \right| = 1 \),则\( \left| {2 { { \bf{A}}^{ - 1}} + 3 { { \bf{A}}^*}} \right| = \)______
- 4
若\( A,B,\left( {A + B} \right) \)为同阶可逆方阵,则\( {\left( { { B^{ - 1}} + {A^{ - 1}}} \right)^{ - 1}} = \)( ) A: \( {B^{ - 1}} + {A^{ - 1}} \) B: \( B + A \) C: \( {\left( {B + A} \right)^{ - 1}} \) D: \( B{\left( {B + A} \right)^{ - 1}}A \)