举一反三
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,证明:当导函数[tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有界时,[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]5xj7kOKvswCRhlt6IgfwdA==[/tex]内也有界.
- [1987 年 2 ] 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导且[tex=4.071x1.429]yApvS3TPe/+BmYN+KyWzUf9VKa3ZPsUmBjAtOkZd230=[/tex],则[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内单调增加。
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内连续,[tex=5.929x1.5]sbopwFh15DGdZNjI1iYy4G6kSElxDmO0lvvMWmfORGBEOuGXy29kO5fEkYxoidfH[/tex]存在,证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有界。
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内连续,且[tex=2.714x1.5]sbopwFh15DGdZNjI1iYy4BCIF+of2Gf+KVIvIOMzH1E=[/tex],[tex=2.643x1.5]IHSXusjiWmyZ2OSczOJSFbS9huIbEWUqkRG2jpVkEYc=[/tex]存在,证明函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有界.
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,证明:在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内至少存在一点[tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex],使[tex=11.429x2.5]WOqEVrpuCOha2ZBQjNNPrAVxQjjfA1h4tb1zjguDu2gGIMJX1FDyEvF1edf6o7UBVNxanJs2u11gkxisMYf5sA==[/tex].
内容
- 0
设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,且[tex=6.714x1.357]mMYUeNAe38X+/GvdLKmvRw==[/tex],则[tex=10.0x1.429]BOXEzuhVMucQckW13ygVY8JTh2xCaqQTYWN/JsobNoDVoIPzlYS/nwzbAZk73+Oa[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有解。
- 1
如果[tex=4.214x1.429]79SmwT+8J9VTqKDgDEyFq+QMKYDkRIWTR4MmQ73vc1M=[/tex],[tex=3.429x1.357]ZLfTJQWoxt0oCxcDdQJTOQ==[/tex],则在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内,函数[tex=3.143x1.357]SvkmdiaSCBne2lfTn9xiFw==[/tex]的图形为[input=type:blank,size:4][/input].
- 2
设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在区间[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内恒有[tex=4.071x1.429]yApvS3TPe/+BmYN+KyWzUb9sMe+ByrnUMuVM64TXSII=[/tex],[tex=4.214x1.429]/FYTUVhgTPYa3RqQR+bSSdQjFzZG6v0k2dOeoXHFoIc=[/tex],则曲线[tex=3.143x1.357]SvkmdiaSCBne2lfTn9xiFw==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]上 未知类型:{'options': ['单调上升,下凸', '单调上升,上凸', '单调下降,下凸', '单调下降,上凸'], 'type': 102}
- 3
设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]J5pdOYo+31b9out4RyVbtA==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导且[tex=4.071x1.429]b+92QgRbOOnD+w8x5M9YxUhOvH3DJr/4nSQbdlWRDeg=[/tex],证明函数[tex=9.571x2.643]nvrFVxX1j11ULW4ha/NmQon1wTFHwPAcmPc86vSBZ6Gf7ayM4BEDThfV3V+irOD9[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内的一阶导数[tex=4.214x1.429]CzbyfntAv6grHDaY/5T8es9F5+q85WcOto3cuIUv528=[/tex]
- 4
若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内恒有[tex=4.071x1.429]b+92QgRbOOnD+w8x5M9YxV2vDx2ZfEnGDC2wx+LB3Zs=[/tex],[tex=4.214x1.429]/FYTUVhgTPYa3RqQR+bSSdQjFzZG6v0k2dOeoXHFoIc=[/tex], 则[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内 未知类型:{'options': ['单调减少且是凹的', '单调减少且是凸的', '单调增加且是凹的', '单调增加且是凸的'], 'type': 102}