举一反三
- 求正交矩阵[tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]使[tex=3.0x1.214]4GZtEytVmkWzlt17epB8Bg==[/tex]为对角矩阵,[tex=9.929x3.929]eqzeetOkAKBXtvYYcvdj2qF34S5TqJZtD5KQpjvnnYQ3zgPD8ngcoKDU87jB2ruYktcGAbADgO/ZmjPT73RQjLfHm0hmqOnE8gSt0jzce4ghAsQG0l80qkIg65Kk7dxW[/tex]。
- 对于下列实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex],求正交矩阵[tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex],使[tex=3.0x1.214]3LPwI+Ms8uWX4W/wZJKnrQ==[/tex]为对角矩阵:[tex=8.571x3.643]3BT1BgBZQ5uJXxD5dg+w26muwh1xN1sRXO8Q3eF5f+iXIsfuTxHnjB5FW20E+IlcYCsQlk+1StM0NRY/eomQlo81btRtBoRS83IigXhahzWkoOaSWLYzjrUkt9UPITWH[/tex].
- 设[tex=6.214x2.786]QN0fTQbn6M33pU3gx/S2sgWMHi1rbij7llkPWWB42uV5Qyn+P9+UVvwLe1RnzybmSCR+RBYtfkGDtZvthW13kw==[/tex]求正交矩阵[tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex], 使得[tex=3.0x1.214]jFsyeClx4q+gFNoU4/Rj1A==[/tex]是对角阵.
- 设3阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为-2, -1, 3,矩阵[tex=6.786x1.357]5sQBSCH1+oEoQda8DcapHw==[/tex],求矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的行列式[tex=1.357x1.357]JRr5OoiiAPF9KB2ukKJtuw==[/tex]
- 对5.2节例1的矩阵A,求正交矩阵T,使[tex=3.0x1.214]nxoh1/GdCZJU4Oo0d7avobML6wHU/bDwu64m8PV3so4=[/tex]为对角阵。
内容
- 0
设[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]矩阵[tex=5.0x1.357]H7SDmNgtZd7dNv+vHXA0GeG4RTIHoWUo36gVzB+CYOY=[/tex][tex=16.571x4.5]D21vQN3vgKRjnD964VQ2x7eq7eqbunio9bCeoh+r05KfjexPVVPWczALL5zDDG7EkL2ZQBW4FX3gbbXtlfsvXKZn3nBozbas9pNJFZjf7eASDWTkbN+ck+EqxBMKD7ojCA1TO+4RczY4ZJ5KHTZEYF0zkawTSnoH2sj1RRIdn2yw05b4ONL43u6oSEzvka2hb09dOldTJKZ3nXlIAO06tW5oDJjlwFjA3kz8XpAxssEqH0FdZk9NfJRLCtXBpQub8EbEjQZ4Rwygs6whn87sF09P94DV3OZcnlcw0ZJRc2IEBoqir77OgrPds3HP33VM[/tex]试求一[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]矩阵[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex],使[tex=3.0x1.214]rN84CqmtCk5MRAP5g+8tJQ==[/tex] 为对角矩阵.
- 1
已知3阶矩阵A与3维列向量 x 满足[tex=6.857x1.357]zd0nq0IiNsY0hFTyLJHQy4eC+A8zUY14VqChcVve0aM=[/tex],且向量组[tex=0.714x0.786]Qp78QkdFrqytlOsANWrP9w==[/tex],[tex=3.5x1.429]c2YtesCJSYo0KOSy0rMECg==[/tex] (1)记[tex=10.643x1.357]3tyZrBE07WCx0ZFK2Y3aVjbjYUrJ/5Q0lIjkUE1dgc8=[/tex],求三阶矩阵B,使AP= PB;(2)求[tex=1.357x1.357]0awZUhfhOcjHk6LSkdT6Gw==[/tex]
- 2
求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 3
设矩阵[tex=8.0x3.5]5j3CprNTNJSzO282PAZoaZsQqb3XGohVgBTu4UCtH/ryoeZY1HvirNTNqCfaFb2GVY2s2Hz/AZgjWmdV9v+Pz0nGN84fFES+y3l7r2m/lX6Z/Vj+xSKFTE7ZJECzkSg1[/tex],[tex=5.5x3.643]ukKxkkTuctwYxMvbznq37ZX3vrKZ9WhusM98NojDNHMyVNqYzYSaNv4BiQ230ZARM+Dmtiy8XOr/x8ksgW8iueJyUY0hA9bsZxeRUfTCKcM=[/tex],线性方程组[tex=3.0x1.214]716pZipKi0lEsFN+3K8sSsPs0L/o02wDOHdnVllkC3g=[/tex]有解但不唯一。试求:(1)[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的值;(2) 正交矩阵[tex=0.929x1.214]m0fwSQ0GpqNiS4XecIGGWw==[/tex],使[tex=3.071x1.429]wLW5fF0AssQ0keyd/CuzGR0P7CFMtR7jCr5+d+ve0xw=[/tex]为对角矩阵。
- 4
树 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 如图 16.18 所示. 回答以下问题.(1) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 是几叉树?(2) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]的树高为几?(3) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 有几个内点?(4) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]有几个分支点?[img=273x205]17926ce3f0ebfd1.png[/img]