• 2022-06-09
    求正交矩阵[tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]使[tex=3.0x1.214]4GZtEytVmkWzlt17epB8Bg==[/tex]为对角矩阵,[tex=8.143x3.643]eqzeetOkAKBXtvYYcvdj2iKw+oJLI1ciHKkEpwS/Fwwid3Oq5Bjt9D441+8v/BOuWRUXji3yYjs6Plc3UxKlp6byJYSzQDSsihfpjBzPbMopmMIewgR9AcxcyVJMJRMi[/tex]。
  • [tex=21.786x3.929]VjJrpaM/OIP00OSzL+GsFjWhHcqzRT2R1v/W5B4QnPc2jE1K18qJR8LygxKm3OgpXLcmr8uQNLW8T7NlqU4DdS3cTHKNRjaB2RGKHyHLQcdCYk/SlUeGOv235RHHg1H3nm8typMpHBs5mrWQxD3W/luzeIGBAH9znNt/aqM6znxHrogRwFVtU6Kgj1/XP4jWK3GBoHDOOGK3VlRJbm1mGQ==[/tex]得[tex=7.214x1.214]6CzHpBoEVdfGanuoycm4yBkK0smga8zjEAet8mMgvTaUUdAjtnFxuARU/aoOWa4x[/tex][tex=1.143x1.357]Nj3tQaUiv2K4PmGoHjSR+w==[/tex]当[tex=4.714x1.214]Qc9hW5Uqam5sgs4jbcMf7SxIfJFiYMb0Wioq1APQL8E=[/tex]时,[tex=12.714x3.5]NeoTBlf1CmkUoMf07Si5dA9++JixUd9TssU//MKY6Gs8rMBpywlAlHL9RwZ0zHMevkhmKXIBvT22bizPCzzkT1RAz14CSMW3PjymSL4X1uI/Iw45jbi21pZj3cKNn3TDNMNm6XEuW6ZTBs5jOKgY709AqRIKXE7O6mKZnbV39tW7EpRT+Dg91AGY4uFtB76wRKEj7Q1ohmUEQ8Ss/uxeDOP7a44hIp4NdLLv1+oTWi3JK3YRbuWDJvO5f51u5gdvyI6QUAj78EA2t9OXS13sgw==[/tex],其基础解系为[tex=11.929x3.643]SnEN0b3+0/UDsLx8pK3eHHT6yPRlCYEzbvxbW3Oa3kwbB2PnoexBjNLVoMWTKyQc62rNMy9UFhRDABDk+WGiay+neDAnGJxFEjslb+iuwvTd4Mi02LdFxhL4okylIeNYjjA0ed06HT1PW5jgmKOSM3egk+guZpYVhoRePIJbnGMLUsk7gz8BkbyC/qwX1gr3[/tex],正交化得[tex=21.357x3.0]P8sJ/lIsDR97i2/pNbGsnKaYJW3yj8+ySGh2Q6ymDr6fKMfDdY4JawXKENuB9PfFtOeN/Ez36PnWHskyMO/KzP8jcSQfSfSjQkuryPbUawfu/t57nWvThCmdluq/QE5OJF/qH7ndeLufScArhhXYlpbamLD8GxvdpdQWdjg1ISPHuWBCud81Ifv5IPQvGAxpF1v1jpdEEiKXesGNlGEaj/M4bIz4FdI/xJ+Jz5saqOywVVM8HQsllF8inAwIMkxl[/tex]单位化得[tex=28.214x3.571]KqaF8nvr4eC9lemU2xQa4oM8ILjMekpaj/wCkF+xfjAEthVGnoYpLopEYxzrlism1T8oqXZw1c7qE3PGTb+FvJoKHiuOAk6atxJxKMSrsYIZaNoFjL0HYgoT2MuLHFafOe0l9GkTmGXkHpnnT9p8Ya5kYuaVoD1Df6Rjl2m7IWtFxIssikDkKNWZDV/oP1+fCDu37Wals5Pm9+XHAznhSsZWozlnrgSZno8nvbN3NY6kZhOg+KRuZFnHKJU2AgBUvCn7bQ4uYumpEH0fiTw7eimumXhjOqvsl/DvufY0Tyi9KIOyrmQO8FBcLahKjfjoaXUWTIF2/F6IsMII0ZmRjA==[/tex][tex=1.5x1.357]kNQitGzHISnX2CdWXihl3g==[/tex]当[tex=2.214x1.214]xSbaj2RSZ0R657K2hn2VtQ==[/tex]时,[tex=15.214x3.929]NeoTBlf1CmkUoMf07Si5dKO4ObUpr+KzJ33PTNjAVI91aRWkVOYnhvAVVaVn/MpIdQAiRF1cpXQOEWsinN1u/Kb/q89jvmE2rfY/3U5oev5g6DI5djjBFME4zs/Dmajm70XzSWhSWKV3z/23ELLeMf10gIBxOUoTxvBH0Y7Gz+wWrNE9J+bVC1uD+tP/DfOxeqWL19L8P+86z/3UCehljezYWbT6JxPauyjEsc5v/tE6t21t2BzbI/jI6acHRyJjS7COmwdMo//iUovppjbCxg==[/tex],其基础解系为[tex=5.071x1.5]yfYa3mlPdZwO5ar1ImVcOP8KSqQYtciFOiypaz9lGac=[/tex]单位化得[tex=9.357x2.643]7RZNwQGoFzhAb+7dQO5OGlNP2HaFHpbJ0Cn5hAPs7N33TVZCnK3J9wvxxZlFucMQmwWm4zghPi/YJqXpm0BBHLGvj9fNZzlWTFMIJbFsz6o=[/tex][tex=12.286x8.929]0RjF21GUBSYpJ+emRDcut6yqDA3GvhtE/kBDnT6mMNkhjYZ1QiYRi52Rhu7iICDOAdalWd+HxEMYEBLREpwt5EotS72KI8cK9kLGzOAHIT3OH26QIiZlSs2EdHywLKjsAAXa7CNZQnAK3A9fZRbgK9tDCeocTZruRRbFA0DVmFUTFuCgF2F71fjgNAlzXLet1qvcE+wZEOwfFu/63d/alBhtrojf2ssJHRVS2yiNnJ/890Pkd2pmc8rPoWaE8c/Q1aKEWbkIPzAgjzDIvQKdrQ==[/tex] .[br][/br]

    内容

    • 0

       设[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]矩阵[tex=5.0x1.357]H7SDmNgtZd7dNv+vHXA0GeG4RTIHoWUo36gVzB+CYOY=[/tex][tex=16.571x4.5]D21vQN3vgKRjnD964VQ2x7eq7eqbunio9bCeoh+r05KfjexPVVPWczALL5zDDG7EkL2ZQBW4FX3gbbXtlfsvXKZn3nBozbas9pNJFZjf7eASDWTkbN+ck+EqxBMKD7ojCA1TO+4RczY4ZJ5KHTZEYF0zkawTSnoH2sj1RRIdn2yw05b4ONL43u6oSEzvka2hb09dOldTJKZ3nXlIAO06tW5oDJjlwFjA3kz8XpAxssEqH0FdZk9NfJRLCtXBpQub8EbEjQZ4Rwygs6whn87sF09P94DV3OZcnlcw0ZJRc2IEBoqir77OgrPds3HP33VM[/tex]试求一[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]矩阵[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex],使[tex=3.0x1.214]rN84CqmtCk5MRAP5g+8tJQ==[/tex] 为对角矩阵.

    • 1

      已知3阶矩阵A与3维列向量 x 满足[tex=6.857x1.357]zd0nq0IiNsY0hFTyLJHQy4eC+A8zUY14VqChcVve0aM=[/tex],且向量组[tex=0.714x0.786]Qp78QkdFrqytlOsANWrP9w==[/tex],[tex=3.5x1.429]c2YtesCJSYo0KOSy0rMECg==[/tex] (1)记[tex=10.643x1.357]3tyZrBE07WCx0ZFK2Y3aVjbjYUrJ/5Q0lIjkUE1dgc8=[/tex],求三阶矩阵B,使AP= PB;(2)求[tex=1.357x1.357]0awZUhfhOcjHk6LSkdT6Gw==[/tex]

    • 2

      求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$

    • 3

      设矩阵[tex=8.0x3.5]5j3CprNTNJSzO282PAZoaZsQqb3XGohVgBTu4UCtH/ryoeZY1HvirNTNqCfaFb2GVY2s2Hz/AZgjWmdV9v+Pz0nGN84fFES+y3l7r2m/lX6Z/Vj+xSKFTE7ZJECzkSg1[/tex],[tex=5.5x3.643]ukKxkkTuctwYxMvbznq37ZX3vrKZ9WhusM98NojDNHMyVNqYzYSaNv4BiQ230ZARM+Dmtiy8XOr/x8ksgW8iueJyUY0hA9bsZxeRUfTCKcM=[/tex],线性方程组[tex=3.0x1.214]716pZipKi0lEsFN+3K8sSsPs0L/o02wDOHdnVllkC3g=[/tex]有解但不唯一。试求:(1)[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的值;(2) 正交矩阵[tex=0.929x1.214]m0fwSQ0GpqNiS4XecIGGWw==[/tex],使[tex=3.071x1.429]wLW5fF0AssQ0keyd/CuzGR0P7CFMtR7jCr5+d+ve0xw=[/tex]为对角矩阵。

    • 4

      树 [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]  如图 16.18 所示. 回答以下问题.(1) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 是几叉树?(2) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]的树高为几?(3) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex] 有几个内点?(4) [tex=0.643x1.0]iollMFTzm3iqFEHRyKQe1A==[/tex]有几个分支点?[img=273x205]17926ce3f0ebfd1.png[/img]