当$x\to {{0}^{+}}$时,下列函数中不是无穷大量的是( )。
A: $x-\ln x$
B: $x+\ln x$
C: $x\ln x$
D: $\frac{\ln x}{x}$
A: $x-\ln x$
B: $x+\ln x$
C: $x\ln x$
D: $\frac{\ln x}{x}$
举一反三
- 函数$f(x)=\ln \ln x$的导数是( )。 A: $\frac{1}{x}$ B: $\frac{1}{{{x}^{2}}}$ C: $\frac{1}{\ln x}$ D: $\frac{1}{x\ln x}$
- 求函数$f(x)=x^{\sin x}$的导数 A: $x^{\cos x}$ B: $\sin (x) x^{\sin (x) -1}$ C: $x^{\sin x}(\cos x\ln x+\frac{\sin x}{x})$ D: $x^{\sin x}(\sin x\ln x+\frac{\cos x}{x}$
- \(\int { { {\sec }^{3}}xdx}\)=( ) A: \(\frac{1}{2}\sec x\cot x-\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) B: \(\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) C: \(-\frac{1}{2}\csc x\tan x+\frac{1}{2}\ln \left| \sec x-\cot x \right|+C\) D: \(-\frac{1}{2}\sec x\tan x-\frac{1}{2}\ln \left| \csc x+\tan x \right|+C\)
- 求函数$y=x\ln x-x$的微分 A: $(\frac{1}{x}-1)dx$ B: $(\ln x-1)dx$ C: $\ln x$ D: $\ln x dx$
- 函数\(y = \ln \ln x\)的导数为( ). A: \({1 \over {x\ln x}}\) B: \( - {1 \over {x\ln x}}\) C: \({1 \over {\ln x}}\) D: \( - {1 \over {\ln x}}\)