说明数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级上三角矩阵组成的集合 [tex=1.286x1.214]DhmGulu5ewe0zEzEpnE7HA==[/tex] 对于矩阵的加法与数量乘法, 形成 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上一个线性空间, 求 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的一个基和维数.
举一反三
- 说明数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级对称矩阵组成的集合 [tex=1.214x1.214]GdanU2m1RsjAMtjfG9rqyg==[/tex] 对于矩阵的加法与数量乘法, 形成 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上一个线性空间,求 [tex=1.0x1.214]hhEyiXsmUqGVtlGvWeNOYA==[/tex] 的一个基和维数.
- 说明数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级斜对称矩阵组成的集合 [tex=1.214x1.214]dP6r3H0Vm1HmvZavqbdLOA==[/tex] 对于矩阵的加法与数量乘法, 形成一个线性空间, 求 [tex=1.0x1.214]++ZnQ9Yy0yDRqmUwKWQxMg==[/tex] 的一个基和维数 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上
- 求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵全体组成的线性空间;
- 求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶反对称矩阵全体组成的线性空间.
- 证明: 数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上每一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 都可以表示成 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个一维子空间的直和.