讨论函数[tex=7.0x1.286]p6KqQpJffsB+VtqcKPApn9KPYN5KFXlWZN9SE3K6x+I=[/tex][tex=3.0x1.286]Nl/NBNyCFpk+ZEqEEQBIIA==[/tex]有几个零点?
举一反三
- 方程[tex=5.643x1.286]aVDq0ZDk/4AhaTPz9kFgv7ZTYRUwumGJ4Bd2nyX2HUg=[/tex][tex=3.0x1.286]Nl/NBNyCFpk+ZEqEEQBIIA==[/tex]有几个实根?
- 求圆 [tex=5.5x1.286]1dhPauTZum+c31XeDU5dG7OYwZv6hCgzxJo0OOzeOUs=[/tex] [tex=3.0x1.286]Nl/NBNyCFpk+ZEqEEQBIIA==[/tex] 的弧微分.
- 已知星形线[tex=6.143x3.357]fnpmC2J6JmQBLyo5NmGAz3jVcwYZMZw0YQ/CFBy2Wa9zdHPEw+mDDe3w37nZYpizPVMMc+bi1LESRCDg++jwWlPxJauQ9ZLONOeVqyXGqDo=[/tex][tex=3.0x1.286]Nl/NBNyCFpk+ZEqEEQBIIA==[/tex],求:(1)它所围的面积;(2)它的弧长;(3)它绕x轴旋转而成的旋转体的表面积。
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 用比较判别法或极限判别法判别级数[tex=4.5x2.714]ySadpvq7BrEZCGdcnD6+aU21IvkZUHF98pGqJHkDnmjy8qWAtcIJmSspayEG4N8U[/tex][tex=3.0x1.286]Nl/NBNyCFpk+ZEqEEQBIIA==[/tex]的收敛性。