利用 Mean Value Theorem 求 \(lim_{x\rightarrow 0+}\frac{2^{x}-2^{sinx}}{x-sinx}\) 的解 (Mean Value Theorem을 이용하여 \(lim_{x\rightarrow 0+}\frac{2^{x}-2^{sinx}}{x-sinx}\)의 값을 구하여라).
A: \(ln\, 2\)
B: \(2ln\, 2\)
C: \(e^{x}\)
D: \(e^{2x}\)
E: \(2e\)
A: \(ln\, 2\)
B: \(2ln\, 2\)
C: \(e^{x}\)
D: \(e^{2x}\)
E: \(2e\)