在曲面[tex=5.214x1.429]KrKXdZekVXZ3YMba2MmkFg==[/tex]位于第一卦限部分上求一点,使该点的切平面与三个坐标面围成的四面体体积最小。
举一反三
- 在过点 [tex=5.071x2.786]r15t12WUs8GDlxeqzT0hnlk2HshV3xfVUs/a6VU17IYPxwN6C/NELn2Iben56tDt[/tex] 的所有平面中,哪一个平面与三个坐标面在第一卦限内围成的四面体体积最小?
- 在第一卦限内作球面[tex=7.0x1.286]QwY3CbnOdl+ukx2Eamho1NwuDTI12DGf5Yflz2yY1/E=[/tex]的切平面,使得切平面与三个坐标面所围的四面体的体积最小,求切点坐标。
- 证明: 曲面[tex=6.429x1.5]CVlADWnigjoCB0pom6sf4Zu4qSy0dG7AaWNOoZECzWU=[/tex] 上任意一点处的切平面与三个坐标面所围四面体的体积是一常数.
- 求过点 [tex=4.0x2.786]EWdpSuGc4Ke6fCPDU2n15W6ahcpoi5dwHjY0NBPHIhI=[/tex] 的平面,使它与三个坐标面在第一象限内所围成的立体体积最小.
- 在椭球面 [tex=3.929x1.286]OgRXGBnuYUkrpNulxRW68D36NV9X5hevhTpuCfbJIg4=[/tex][tex=2.929x2.143]vQKCqDgpTqiKKo6E1S8dWFJ8otrNLUkBBT+QQL1zGoQ=[/tex] 的第一卦限部分上求一点, 使椭球面在该点处的切平面在三个坐标轴上的截距平方和为最小.