• 2022-06-07
    某企业生产某产品,[tex=2.286x1.143]X1i8+Dn67C6ACFCBmtNUtg==[/tex]月份的产量[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]与生产费用支出[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]的统计资料如下表:[img=648x104]17940cef32365e9.png[/img]在[tex=3.143x1.0]pRdMw/mWuhQsXdCOsyCPTw==[/tex]显著性水平下,检验回归效果是否显著.
  • [tex=13.214x12.071]Ck4j1YFlvVH5wCAykOEMi/fwGnkS9IyHpGQByJo3/e7XjAosyyslTtnWiMmiX7o6UeSRk1D+Mb7lNjlfbXGBu2wuKi6C5xhMB8n74K+qjtntb8u1vTdgTh+8x+2pdWGWeDwoiQaeguIytSMFSVrdGOwPIMhBGX9qtzIL8p4Rmyr2D7k96y1dxPzqBqenIclHfu8C4hJ7ZegbMhQCqXndz3OjKJCY1WabzP7J5KnfDApMs9481YQQrf1mzphItL9QEYahUOap+vsLdKSaiPpQnQe5i7PfnbI4vo+pQZPwKcVvb0wy60AKOc29VWZHDkLF[/tex]即认为回归方程有显著意义.

    举一反三

    内容

    • 0

      设[tex=2.714x1.357]AyydKThGWuhLufX3R3V/hpcOkfwVst9LT3fIys6ScuE=[/tex]是模格,[tex=4.429x1.214]jjQpFPPwtxOZ8lc7ywXtAQ==[/tex],且[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex], [tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]分别覆盖[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],证明[tex=2.286x1.143]z+DD0dY+JBIHoZyGATbJNA==[/tex]覆盖[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]。

    • 1

      利用谓词公式翻译下列命题。c) 存在实数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex],[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 和[tex=0.5x0.786]gdMkE6SnyZedYLxpUxdkaQ==[/tex], 使得[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]与[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]之和大于[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]与[tex=0.5x0.786]gdMkE6SnyZedYLxpUxdkaQ==[/tex]之积。

    • 2

      在16个两变元[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]的布尔函数中,有多少个能够用下列运算符、变元[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]以及值0和1来表示?[tex=1.286x1.357]wi9SzxAlLpK78aH0t+Y7JQ==[/tex]

    • 3

      某消费者效用函数为[tex=8.357x1.286]D0aApBGqyWMLWhmFhcvkipZmMsB6EvYz6UF8Kgff9XI=[/tex],如果商品[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]的价格与商品[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]的价格相等,该消费者会选择购买等量的[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]。

    • 4

      证明;仅当[tex=2.5x1.214]9DGmnxh35IfB4i3nd+vacA==[/tex]时, [tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 对 [tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex] 的线性回归的斜率估计量等于[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]对 [tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex] 的线性回归的斜率估计量的倒数。