• 2022-06-07
    证明:秩等于  [tex=0.5x0.786]c3XP7Nc5gbHP2NzYIVnjbg==[/tex]的对称矩阵可以表成[tex=0.571x1.0]C5fA+C2Kq7LRoadFKP5fTg==[/tex] 个秩等于  1  的对称 矩阵之和. 
  •  设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个秩为[tex=0.5x0.786]c3XP7Nc5gbHP2NzYIVnjbg==[/tex]的  [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]  级对称矩阵,则有可逆矩阵[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]使 [tex=21.714x10.357]0pkoJFt1VORBxxwxFfHPB5oWhvxhf3Ab/fTq4z7XQTPNMVBrtMpw4yJturkM+ab+m6+9anz/G/krfRd7j3W5FMpkivDrIjKlUtGhBQz40Xpsjzz+8abv2kUe0YibLuT1YUQWyxODJ+87dljzPVAPuGeaBXUIHGGDnVCrDqDZXZAWBit57cS5Sov2HWKBnEZ5BfcDz/NCj1uU7sCWe2sOrAMIhVIxKXoPOlNYVp80jEXtAUIwEdL8Os63syoQqYvYviTYXvI/Lp+lQOSycBbo1+w4V6rud4P6fHjlAEHL3Q5MzlJhRA5u8Nl8PDZjKnF5QoHvCuIAZweuc5UVXRq2/zCqqeYONtasSAGsTimiM6ODN7bLbVBI3c9O1I827EtlkWLd3GtKim838Cus6uaTOPulaKv5f3XwskqIlZGqeZSImYWvJggpe8noE4dF/FhT+jLGFXaj9tTfkHSYYu+Du9T2jSHAl7hohtNy0Zmlu3MXdoCffPf3lyw3YOncDSKz[/tex] 其中  1  的个数等于[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的秩. 用 [tex=6.643x1.357]MGZZuaELsBIUlA86plbCsWttWMJns9PkhOZbJWqkUeOz6VjoraIACKQbLdp87nWi[/tex]表示对角线上第[tex=0.357x1.0]+eJLelx8thmbkEj/Y0iCOw==[/tex] 个 元素为  1 ,其余地方都为  0 的 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]  级矩阵,则[tex=3.5x1.214]vFL1nIYhir+gJ32j0fpwMA==[/tex][tex=19.5x10.357]075gCzZzsMRb6HYXYk9X91+pXtf7RZKzAIoBAtBcyepcubxW8soeoL/TDk88ibBL+ixb0gp7fa1aDJlLNrhlEfYGzFXoeBhTfh61Ad+65gHq5xoyF8WOICA41VURlBk/YjItW5DEsTEeQ+Pbusbee5XYtzXj3tbE8gjA9J/dUtbxSONMUmz/P+pMlLsqKyfzs9iVmRTk/XtxKduGjgtXEQmPEhcqTprcWLwzaHgrcHiXAMul5pcDBzX+Y1PWxT0GyjtwoL99yLCbfEli8mvh1VRbceUUnGFdMUzX5u/YvdC6SiKorQ6dRKgw7DwIiy47KGQs493fUuygyj4ZX2C9ZzzLYhZXz5wjvkWwgU4qxKwbUOPA85KvpqbYbRTvfqUfy4hzBhFtfDKzGeDpiTCTD5sAffOJy0j4/kuwqeBq8oOS9zAvm/akkQZRQL3XG5bqA1zo1yL0LTAw3lxvu9WLLA==[/tex][tex=20.714x1.5]3G0/7GMmGJ1l3GG/M/UX8lSgOENbeTw7D2F0UM2UvRsl84sTRdjUgt6gdQZAe5u5RSxfMgoFU4jrCHzWQdwxDFIYgamHcOXp0yDqodzH/Kid/+lWYZ837p472jxwFk2M0on1yUTTAWTB4brIMupnbXzJWYpJ87yM+NhU8zM+at71AOTlDQ7FxaCNMHlwPHHrWJ/uJXK4dmbicaeedvSSKBYUjLs9NMhLKTDbDWjYklA=[/tex][tex=25.5x1.5]3G0/7GMmGJ1l3GG/M/UX8sJfLKXXZ+/8796ubi5f9klqGdVvO1yzBjljESmChJ792ZkaSDDZhLgaEIAIi6W4TnOPAM1Nbf2WsJLZMMY0xkd0nn8isdXdMXUh31k0hUimOnY+vbKSeNO/8bUdUVQPspab/OjNIFB9hEZGq6V1keLIJ+OE2JvjuHC55YRFBcHVH6Q/i/Gjo8MZ2PTGjXNLfYk/wZRWZV4fLX9bvXMQIBvCVuLQWAfT8fZSgYjbqCf1NMNVGCRrctaJXJ7wdsY36k1RWfFH4jbHhohKPQZApbs=[/tex][tex=5.0x1.429]MOVxpGFawESz/so5o/BWirnY9xAw7BYre3Iv3WZv3hk=[/tex]因为[tex=1.357x1.286]MGZZuaELsBIUlA86plbCsYTLkpRF/5dQ6iXNYyRrdmo=[/tex] 的秩等于  1, 而 [tex=1.786x1.214]0pkoJFt1VORBxxwxFfHPByJ/E454SmdT0f57QehhFqM=[/tex] 为可逆矩阵 所以上式中的[tex=5.0x1.429]0pkoJFt1VORBxxwxFfHPB4my8sEzWLq6/ePCJM1faYBfir+GSiKC3iKowvmxEmefiLX6erxhdj/j/FUR7A4Q4zKyMz4fXeu4xuVEQIoFwUQ=[/tex] 的 秩等于 1,而且[tex=12.071x1.643]MOVxpGFawESz/so5o/BWioz2R3WnvwjKlXfAzOPY5Eg45ATgxIgyEJEA3NhxoDUr7y2ABB1+RyKnbGOe3l8qahZlbcU1/ISTIJuSEnmTPBA=[/tex]因此[tex=11.286x1.5]0pkoJFt1VORBxxwxFfHPB4my8sEzWLq6/ePCJM1faYBfir+GSiKC3iKowvmxEmefiLX6erxhdj/j/FUR7A4Q4yc/1+EOun+rZ+Fj16JpFM7Y0JzSvi6PgUnU7nAbucwS[/tex] 是对称矩阵. 因此 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 可以表成 [tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex] 个秩等于  1 的对称矩阵之和. 

    内容

    • 0

      证明:秩等于 $r$ 的对称矩阵可以表成 $r$ 个秩等于 1 的对称矩阵之和.

    • 1

      证明:任意一个秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的矩阵都可以表为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个秩为1的矩阵之和。

    • 2

      证明: 任意一个秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的矩阵都可以表示为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 个秩为 1 的矩阵之和.

    • 3

      证明定理 2.12:设[tex=4.929x1.357]z39B4wIWNiTWn2US7Ivz2JmHuWj6+X6/P9QrAZ/d2M4=[/tex]是实对称矩阵. 则(2)可以推导出(3):(2)[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的正惯性指数[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]等于它的秩[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex].(3) 存在可逆矩阵 [tex=6.143x1.357]cYCJ67yWnv2ZPgQkVaRYzBQ3NBUfhI9CaZto4GrMbQM=[/tex]使得[tex=11.929x2.786]d9cv4guGp7g0oxFWgLO1yTG78sorjFloKHwDUBUIMobFMrLqH2HrjvOZBM9FhVhEhchFt7RDaw7LFJKnTWQXhamN+i2qRnqSJEwOfo1yxK1PRUSDe5YaMirjsZ4aAPCESzsVArRH8cMeOKp3Vb1JSA==[/tex].

    • 4

      证秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的矩阵可表示为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个秩为 1 的矩阵之和.